File size: 2,202 Bytes
0bbf59d ddd5c67 0bbf59d ddd5c67 0bbf59d ddd5c67 0bbf59d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: peft
license: other
base_model: mistralai/Ministral-8B-Instruct-2410
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Ministral-8B-Instruct-2410-PsyCourse-doc-fold3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Ministral-8B-Instruct-2410-PsyCourse-doc-fold3
This model is a fine-tuned version of [mistralai/Ministral-8B-Instruct-2410](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) on the course-doc-train-fold3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.1116 | 0.3951 | 10 | 0.1196 |
| 0.0543 | 0.7901 | 20 | 0.0717 |
| 0.0747 | 1.1852 | 30 | 0.0615 |
| 0.1014 | 1.5802 | 40 | 0.0576 |
| 0.0608 | 1.9753 | 50 | 0.0554 |
| 0.0319 | 2.3704 | 60 | 0.0546 |
| 0.0476 | 2.7654 | 70 | 0.0532 |
| 0.0866 | 3.1605 | 80 | 0.0536 |
| 0.0563 | 3.5556 | 90 | 0.0540 |
| 0.0158 | 3.9506 | 100 | 0.0535 |
| 0.0306 | 4.3457 | 110 | 0.0539 |
| 0.0565 | 4.7407 | 120 | 0.0538 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |