--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-small datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper_small.hi_lora results: [] --- # whisper_small.hi_lora This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4588 - Wer: 52.1713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4177 | 2.44 | 1000 | 0.5055 | 59.4430 | | 0.3887 | 4.89 | 2000 | 0.4759 | 52.9544 | | 0.3595 | 7.33 | 3000 | 0.4660 | 52.4634 | | 0.3643 | 9.78 | 4000 | 0.4598 | 52.2221 | | 0.3556 | 12.22 | 5000 | 0.4588 | 52.1713 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2