charioteer commited on
Commit
dc6791e
·
verified ·
1 Parent(s): f4c00cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -178
README.md CHANGED
@@ -1,201 +1,75 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
201
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - argilla/distilabel-intel-orca-dpo-pairs
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
  ---
10
+ # Model Card: Neural-phi2
11
 
12
+ ![Poster Image](path/to/poster.png)
 
 
 
 
13
 
14
  ## Model Details
15
 
16
+ - **Model Name**: Neural-phi2
17
+ - **Model Type**: Large Language Model (LLM)
18
+ - **Model Architecture**: A finetuned version of the Phi2 model from Microsoft, utilizing Direct Preference Optimization (DPO) on the `distilabel-intel-orca-dpo-pairs` dataset.
19
+ - **Model Size**: Approximately 7B parameters
20
+ - **Training Data**: The model was finetuned on the `distilabel-intel-orca-dpo-pairs` dataset, which consists of chat-like prompts and responses.
21
+ - **Training Procedure**: The Phi2 model was finetuned using the DPO technique as described in the Jupyter notebook. The training process involved:
22
+ - Loading and formatting the `distilabel-intel-orca-dpo-pairs` dataset
23
+ - Defining the training configuration, including batch size, learning rate, and number of epochs
24
+ - Initializing the DPO Trainer and training the model
25
+ - Saving the finetuned model and tokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ ## Intended Use
28
 
29
+ The Neural-phi2 model is intended to be used as a general-purpose language model for a variety of natural language processing tasks, such as text generation, summarization, and question answering. It may be particularly useful in applications where the model needs to generate coherent and contextually appropriate responses, such as in chatbots or virtual assistants.
30
 
31
+ ## Sample Inference Code
32
 
33
+ ```python
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
35
 
36
+ # Load the Neural-phi2 model and tokenizer
37
+ model = AutoModelForCausalLM.from_pretrained("Neural-phi2")
38
+ tokenizer = AutoTokenizer.from_pretrained("Neural-phi2")
39
 
40
+ # Define a sample prompt
41
+ messages = [
42
+ {"role": "system", "content": "You are a helpful chatbot assistant."},
43
+ {"role": "user", "content": "Hello, how are you today?"}
44
+ ]
45
 
46
+ # Format the prompt in ChatML format
47
+ prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
48
 
49
+ # Create a pipeline and generate a response
50
+ pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
51
+ output = pipeline(
52
+ prompt,
53
+ do_sample=True,
54
+ temperature=0.7,
55
+ top_p=0.9,
56
+ num_return_sequences=1,
57
+ max_new_tokens=100,
58
+ )
59
 
60
+ # Print the generated response
61
+ print(output[0]["generated_text"])
62
+ ```
63
 
64
+ ## Limitations and Biases
65
 
66
+ As with any large language model, the Neural-phi2 model may exhibit biases present in its training data, such as societal biases or factual inaccuracies. Additionally, the model's performance may degrade for tasks or inputs that are significantly different from its training data. Users should carefully evaluate the model's outputs and make appropriate adjustments for their specific use cases.
67
 
68
+ ## Performance
69
 
70
+ The performance of the Neural-phi2 model has not been extensively evaluated or benchmarked as part of this project. Users should conduct their own evaluations to assess the model's suitability for their specific tasks and use cases.
71
 
72
+ ## Ethical Considerations
73
 
74
+ The use of large language models like Neural-phi2 raises several ethical considerations, such as the potential for generating harmful or biased content, the risk of misuse, and the importance of transparency and accountability. Users should carefully consider these ethical implications and take appropriate measures to mitigate potential harms.
75