from typing import Dict, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline class EndpointHandler: def __init__(self, path=""): # Load tokenizer and model self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained(path) # Create a pipeline that the inference API expects self.pipeline = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, device=0 if torch.cuda.is_available() else -1 ) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: prompt_input = data.get("inputs", "") vibe = data.get("vibe", "Open to All Paths") # Prepare prompt with Vela's persona prompt = ( f"#### Human (Vibe: {vibe}): {prompt_input.strip()}\n" f"#### Assistant (Vela - your Camino companion):" ) # Default generation params generation_args = data.get("parameters", {}) generation_args.setdefault("max_new_tokens", 1024) generation_args.setdefault("temperature", 0.2) generation_args.setdefault("top_p", 0.95) generation_args.setdefault("do_sample", True) # Use pipeline for generation outputs = self.pipeline( prompt, **generation_args ) return outputs