diff --git "a/bitcoinforum/3_training/unsloth.ipynb" "b/bitcoinforum/3_training/unsloth.ipynb" new file mode 100644--- /dev/null +++ "b/bitcoinforum/3_training/unsloth.ipynb" @@ -0,0 +1,11007 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "IqM-T1RTzY6C" + }, + "source": [ + "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", + "
\n", + "\n", + "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n", + "\n", + "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting scikit-learn\n", + " Downloading scikit_learn-1.4.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\n", + "Requirement already satisfied: numpy<2.0,>=1.19.5 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.26.3)\n", + "Collecting scipy>=1.6.0 (from scikit-learn)\n", + " Downloading scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (60 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.4/60.4 kB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hCollecting joblib>=1.2.0 (from scikit-learn)\n", + " Downloading joblib-1.3.2-py3-none-any.whl.metadata (5.4 kB)\n", + "Collecting threadpoolctl>=2.0.0 (from scikit-learn)\n", + " Downloading threadpoolctl-3.3.0-py3-none-any.whl.metadata (13 kB)\n", + "Downloading scikit_learn-1.4.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.1/12.1 MB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading joblib-1.3.2-py3-none-any.whl (302 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m302.2/302.2 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.4/38.4 MB\u001b[0m \u001b[31m23.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading threadpoolctl-3.3.0-py3-none-any.whl (17 kB)\n", + "Installing collected packages: threadpoolctl, scipy, joblib, scikit-learn\n", + "Successfully installed joblib-1.3.2 scikit-learn-1.4.1.post1 scipy-1.12.0 threadpoolctl-3.3.0\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install scikit-learn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting unsloth@ git+https://github.com/unslothai/unsloth.git (from unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Cloning https://github.com/unslothai/unsloth.git to /tmp/pip-install-h9k_u6sp/unsloth_5b86e8db37894610a2413f2f85a600c7\n", + " Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth.git /tmp/pip-install-h9k_u6sp/unsloth_5b86e8db37894610a2413f2f85a600c7\n", + " Resolved https://github.com/unslothai/unsloth.git to commit dbba69b085b9d6049b57b48b882af7e9f29df5b2\n", + " Installing build dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n", + "\u001b[?25h Installing backend dependencies ... \u001b[?25ldone\n", + "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25hCollecting bitsandbytes (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading bitsandbytes-0.42.0-py3-none-any.whl.metadata (9.9 kB)\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (23.2)\n", + "Collecting ninja (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl.metadata (5.3 kB)\n", + "Collecting flash-attn (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading flash_attn-2.5.5.tar.gz (2.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.5/2.5 MB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25hRequirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from bitsandbytes->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (1.12.0)\n", + "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.2.0)\n", + "Collecting einops (from flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading einops-0.7.0-py3-none-any.whl.metadata (13 kB)\n", + "Collecting xformers@ https://download.pytorch.org/whl/cu121/xformers-0.0.24-cp310-cp310-manylinux2014_x86_64.whl (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading https://download.pytorch.org/whl/cu121/xformers-0.0.24-cp310-cp310-manylinux2014_x86_64.whl (218.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m218.2/218.2 MB\u001b[0m \u001b[31m30.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hCollecting transformers>=4.38.0 (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading transformers-4.38.2-py3-none-any.whl.metadata (130 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.7/130.7 kB\u001b[0m \u001b[31m25.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting datasets (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading datasets-2.17.1-py3-none-any.whl.metadata (20 kB)\n", + "Collecting sentencepiece (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB)\n", + "Collecting accelerate>=0.26.1 (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading accelerate-0.27.2-py3-none-any.whl.metadata (18 kB)\n", + "Collecting trl>=0.7.9 (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading trl-0.7.11-py3-none-any.whl.metadata (10 kB)\n", + "Collecting peft>=0.7.1 (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading peft-0.9.0-py3-none-any.whl.metadata (13 kB)\n", + "Collecting tqdm (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading tqdm-4.66.2-py3-none-any.whl.metadata (57 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━��━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.6/57.6 kB\u001b[0m \u001b[31m12.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (5.9.8)\n", + "Requirement already satisfied: wheel>=0.42.0 in /usr/local/lib/python3.10/dist-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (0.42.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (1.26.3)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.26.1->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (6.0.1)\n", + "Collecting huggingface-hub (from accelerate>=0.26.1->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading huggingface_hub-0.21.3-py3-none-any.whl.metadata (13 kB)\n", + "Collecting safetensors>=0.3.1 (from accelerate>=0.26.1->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading safetensors-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.8 kB)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (3.13.1)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (4.9.0)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (1.12)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (3.2.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (3.1.3)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2024.2.0)\n", + "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\n", + "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\n", + "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (8.9.2.26)\n", + "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.1.3.1)\n", + "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (11.0.2.54)\n", + "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (10.3.2.106)\n", + "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (11.4.5.107)\n", + "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.1.0.106)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.19.3)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.1.105)\n", + "Requirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.2.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (12.3.101)\n", + "Collecting regex!=2019.12.17 (from transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.9/40.9 kB\u001b[0m \u001b[31m6.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.31.0)\n", + "Collecting tokenizers<0.19,>=0.14 (from transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading tokenizers-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\n", + "Collecting tyro>=0.5.11 (from trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading tyro-0.7.3-py3-none-any.whl.metadata (7.7 kB)\n", + "Collecting pyarrow>=12.0.0 (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.0 kB)\n", + "Collecting pyarrow-hotfix (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading pyarrow_hotfix-0.6-py3-none-any.whl.metadata (3.6 kB)\n", + "Collecting dill<0.3.9,>=0.3.0 (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n", + "Collecting pandas (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading pandas-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB)\n", + "Collecting xxhash (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n", + "Collecting multiprocess (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n", + "Collecting fsspec (from torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading fsspec-2023.10.0-py3-none-any.whl.metadata (6.8 kB)\n", + "Collecting aiohttp (from datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.4 kB)\n", + "Collecting aiosignal>=1.1.2 (from aiohttp->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading aiosignal-1.3.1-py3-none-any.whl.metadata (4.0 kB)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (23.2.0)\n", + "Collecting frozenlist>=1.1.1 (from aiohttp->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n", + "Collecting multidict<7.0,>=4.5 (from aiohttp->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.2 kB)\n", + "Collecting yarl<2.0,>=1.0 (from aiohttp->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (31 kB)\n", + "Collecting async-timeout<5.0,>=4.0 (from aiohttp->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (3.3.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (3.6)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.2.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers>=4.38.0->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2024.2.2)\n", + "Collecting docstring-parser>=0.14.1 (from tyro>=0.5.11->trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading docstring_parser-0.15-py3-none-any.whl.metadata (2.4 kB)\n", + "Collecting rich>=11.1.0 (from tyro>=0.5.11->trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading rich-13.7.1-py3-none-any.whl.metadata (18 kB)\n", + "Collecting shtab>=1.5.6 (from tyro>=0.5.11->trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading shtab-1.7.0-py3-none-any.whl.metadata (7.3 kB)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.1.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.8.2)\n", + "Collecting pytz>=2020.1 (from pandas->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading pytz-2024.1-py2.py3-none-any.whl.metadata (22 kB)\n", + "Collecting tzdata>=2022.7 (from pandas->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading tzdata-2024.1-py2.py3-none-any.whl.metadata (1.4 kB)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->flash-attn->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (1.3.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.8.2->pandas->datasets->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (1.16.0)\n", + "Collecting markdown-it-py>=2.2.0 (from rich>=11.1.0->tyro>=0.5.11->trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich>=11.1.0->tyro>=0.5.11->trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git) (2.17.2)\n", + "Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich>=11.1.0->tyro>=0.5.11->trl>=0.7.9->unsloth@ git+https://github.com/unslothai/unsloth.git->unsloth[cu121-ampere-torch220]@ git+https://github.com/unslothai/unsloth.git)\n", + " Downloading mdurl-0.1.2-py3-none-any.whl.metadata (1.6 kB)\n", + "Downloading bitsandbytes-0.42.0-py3-none-any.whl (105.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.0/105.0 MB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl (307 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m307.2/307.2 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading accelerate-0.27.2-py3-none-any.whl (279 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m280.0/280.0 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading peft-0.9.0-py3-none-any.whl (190 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m190.9/190.9 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading transformers-4.38.2-py3-none-any.whl (8.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.5/8.5 MB\u001b[0m \u001b[31m24.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading tqdm-4.66.2-py3-none-any.whl (78 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.3/78.3 kB\u001b[0m \u001b[31m1.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0meta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading trl-0.7.11-py3-none-any.whl (155 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m155.3/155.3 kB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading datasets-2.17.1-py3-none-any.whl (536 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.7/536.7 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading einops-0.7.0-py3-none-any.whl (44 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.6/44.6 kB\u001b[0m \u001b[31m275.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m1.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mta \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading fsspec-2023.10.0-py3-none-any.whl (166 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.4/166.4 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading huggingface_hub-0.21.3-py3-none-any.whl (346 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m346.2/346.2 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m:00:01\u001b[0m\n", + "\u001b[?25hDownloading pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (38.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.3/38.3 MB\u001b[0m \u001b[31m25.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading regex-2023.12.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m774.0/774.0 kB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading safetensors-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", + "\u001b[?25hDownloading tokenizers-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading tyro-0.7.3-py3-none-any.whl (79 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.8/79.8 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m21.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pandas-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.0/13.0 MB\u001b[0m \u001b[31m25.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", + "\u001b[?25hDownloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n", + "Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m40.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n", + "Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\n", + "Downloading docstring_parser-0.15-py3-none-any.whl (36 kB)\n", + "Downloading frozenlist-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (239 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m239.5/239.5 kB\u001b[0m \u001b[31m30.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (124 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.3/124.3 kB\u001b[0m \u001b[31m28.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading pytz-2024.1-py2.py3-none-any.whl (505 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m505.5/505.5 kB\u001b[0m \u001b[31m33.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading rich-13.7.1-py3-none-any.whl (240 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m240.7/240.7 kB\u001b[0m \u001b[31m32.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading shtab-1.7.0-py3-none-any.whl (14 kB)\n", + "Downloading tzdata-2024.1-py2.py3-none-any.whl (345 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m345.4/345.4 kB\u001b[0m \u001b[31m30.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (301 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m301.6/301.6 kB\u001b[0m \u001b[31m39.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n", + "Building wheels for collected packages: unsloth, flash-attn\n", + " Building wheel for unsloth (pyproject.toml) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for unsloth: filename=unsloth-2024.2-py3-none-any.whl size=82614 sha256=321dcd657a2c974732dc746bc1779cc90b18ed7086f92cb2c81c9c0112db6b1b\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-rt5b5nsj/wheels/ed/d4/e9/76fb290ee3df0a5fc21ce5c2c788e29e9607a2353d8342fd0d\n", + " Building wheel for flash-attn (setup.py) ... \u001b[?25ldone\n", + "\u001b[?25h Created wheel for flash-attn: filename=flash_attn-2.5.5-cp310-cp310-linux_x86_64.whl size=120592233 sha256=3fc5d8813904d32cfc77aa4b88d40169dbc12053edb6ee0f1d94159527d05ab0\n", + " Stored in directory: /root/.cache/pip/wheels/b2/67/52/8b6d5fcffdd9e1ec868f554cdef8f03eedb4bf4dcac852fca2\n", + "Successfully built unsloth flash-attn\n", + "Installing collected packages: sentencepiece, pytz, ninja, xxhash, unsloth, tzdata, tqdm, shtab, safetensors, regex, pyarrow-hotfix, pyarrow, multidict, mdurl, fsspec, frozenlist, einops, docstring-parser, dill, async-timeout, yarl, pandas, multiprocess, markdown-it-py, huggingface-hub, bitsandbytes, aiosignal, tokenizers, rich, aiohttp, xformers, tyro, transformers, flash-attn, accelerate, peft, datasets, trl\n", + " Attempting uninstall: fsspec\n", + " Found existing installation: fsspec 2024.2.0\n", + " Uninstalling fsspec-2024.2.0:\n", + " Successfully uninstalled fsspec-2024.2.0\n", + "Successfully installed accelerate-0.27.2 aiohttp-3.9.3 aiosignal-1.3.1 async-timeout-4.0.3 bitsandbytes-0.42.0 datasets-2.17.1 dill-0.3.8 docstring-parser-0.15 einops-0.7.0 flash-attn-2.5.5 frozenlist-1.4.1 fsspec-2023.10.0 huggingface-hub-0.21.3 markdown-it-py-3.0.0 mdurl-0.1.2 multidict-6.0.5 multiprocess-0.70.16 ninja-1.11.1.1 pandas-2.2.1 peft-0.9.0 pyarrow-15.0.0 pyarrow-hotfix-0.6 pytz-2024.1 regex-2023.12.25 rich-13.7.1 safetensors-0.4.2 sentencepiece-0.2.0 shtab-1.7.0 tokenizers-0.15.2 tqdm-4.66.2 transformers-4.38.2 trl-0.7.11 tyro-0.7.3 tzdata-2024.1 unsloth-2024.2 xformers-0.0.24 xxhash-3.4.1 yarl-1.9.4\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install \"unsloth[cu121-ampere-torch220] @ git+https://github.com/unslothai/unsloth.git\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "2eSvM9zX_2d3" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# %%capture\n", + "import torch\n", + "major_version, minor_version = torch.cuda.get_device_capability()\n", + "# if major_version >= 8:\n", + "# # Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)\n", + "# !pip install \"unsloth[colab_ampere] @ git+https://github.com/unslothai/unsloth.git\"\n", + "# else:\n", + "# # Use this for older GPUs (V100, Tesla T4, RTX 20xx)\n", + "# !pip install \"unsloth[colab] @ git+https://github.com/unslothai/unsloth.git\"\n", + "# pass\n", + "major_version" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r2v_X2fA0Df5" + }, + "source": [ + "* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n", + "* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n", + "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n", + "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n", + "* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 527, + "referenced_widgets": [ + "3a4a21c80b1e4232825d13fbceb4e051", + "f16087f7a4f94b18ae92a2615bd3719c", + "06eac325390f467d9825c489eb4cb442", + "9309cba5e6a64d62af82b8e8403336ba", + "c339d8fa8d7d4ad8874bc59f47ef193d", + "c73d502c8be34400bd4fd31f1c14f354", + "34e7e54d02cf4120acc14cfa9430674d", + "52995fc47dcc4b6bbbba3a158370da1b", + "5a88fa6168b34baca965387de6f9cbf4", + "320fff7da29b49d0980a5e19ecdd7e11", + "b0caf6ffd475467b9c26e9258902a6d7", + "8978f89cdfd64c41b504debc99fa000b", + "fad0db53f8d84346996a49bb8548a28f", + "d719af3c7e434c4fbd88ce6442ff94f3", + "1dffcda7345949cca7a01373e87bef91", + "2da70f09f484477ebbb8f81458556515", + "db33c13036a74c5eb2bcab082f9ce07d", + "dca1b3a080e74bf3b00a27dd1ed4b99c", + "838d7a4c2c3a4fe99a3eb0689fa7ef27", + "e0ed107826af43db93b4fbd171bb9f36", + "1eef883b99634b8abefd9c008eddbd1f", + "a858db7a4c8a40a5bedc4ea817491c4c", + "c52fb02a25774735bc6cd1fd4085ffb2", + "2c64fd94311247d89b2bbb37b0a72d52", + "28ffcbb08f9c443c87df1b6d6d5f38bb", + "699373e9a43d4433b1b3eacdc4eb338d", + "ed41c69c299e42ccaea8cf4e31162b8e", + "f85bc895a6ee4c5b8cfd26a1c827888f", + "e5f70528f2834d2b861dc303346eff3a", + "e76d203cc320464cadfc7b2649d8fdb7", + "0b2301c8190944a3bf8935c4bf075d8c", + "ead0df4cb60a4223b6a2d27814971093", + "5b1aa79e9567426d893b92bab1f1cc40", + "6a46284e269e4044b2e082098fb0988f", + "c5311843eaf640fd885b125d32fec217", + "aed33eb228e84f77bf141b5141dab343", + "27cee145c0774440ba13e7033db70b14", + "613978ea26b94edeac575404c09edc52", + "d05f155563dd45c9a0cd76d7d0ee38f9", + "cf6fe6d02df5448986728647e0442031", + "cd12b6b9c1204fe18733c1862d0900e2", + "612b4afa75734acba7ab7917a70ece9a", + "9ca704fdbe8843239b76380e1735bc25", + "07087433b7984095a400cffe9c47b38d", + "3e463765bc424c67b88b5b522fd12f36", + "9cf66b807829446f9985efbddee49228", + "a836c026fe3a4a3d8c981b436b6af487", + "fd99cd77c6e2476aaa4f32bbf2fae893", + "bb4a77f4f8fc4477b1987a0a69ee767e", + "9cb14f593e754af19eaab25521b92907", + "2237cb2d037e4945a7858c3550d12588", + "c694dd6f0d3b4971b11b662b156fc773", + "13578e0496f644a4a454d96645dbf65f", + "abdfbaceb7e24276958b71512b35ddc9", + "8ebff9bab3d240c4a056c6c88a864773", + "ae42b52c748240f2bcbfea01b4573622", + "c590336dde92421c8126df142cc1d05c", + "c2326fa217954f389b973478abd98275", + "b82fba3690c74fc08ec2e8b382245809", + "bc231a99984a4c0d9e6081b339d690e9", + "f2f113c785114890b3eaed0219e2d0f3", + "bffa3542ab7f4b009da51ba63d56e478", + "e50f02bb85d44156887f90ad6aca8102", + "53ceff04ca854c38838dd982b75c5b05", + "2d6d42bf728c42fea2c225e7fb59d582", + "b0543ff9bb5d40fba101c988bfbc027d", + "b5eae4bf90bc4f10baa3cef668109188", + "f15b829dd14a4c95a390721dfd15e44c", + "c5ca8a1293aa46c397bc95bbc239f7e1", + "a7705bbedfcc45f8b227186a619fdb88", + "238205803c234c7fac3106429d86ceee", + "f8d4f91fcd8440bbb41efbdcaed2128f", + "2223525ba0014e018e4833305c7eb26a", + "36082006c1d84d0e8a291e05714d4419", + "0332ff4a20b34672bae74bebf98cc6e2", + "ac5ff6c3f94840e0a856e748d614f985", + "2ab87d2720a243e9ba6942a8a3953c15" + ] + }, + "id": "QmUBVEnvCDJv", + "outputId": "a1a670b2-ee62-4bbf-901a-38f79389db28" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79ded135832a48639851a395e907fba4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "config.json: 0%| | 0.00/571 [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==((====))== Unsloth: Fast Mistral patching release 2024.2\n", + " \\\\ /| GPU: NVIDIA RTX A6000. Max memory: 47.536 GB. Platform = Linux.\n", + "O^O/ \\_/ \\ Pytorch: 2.2.0+cu121. CUDA = 8.6. CUDA Toolkit = 12.1.\n", + "\\ / Bfloat16 = TRUE. Xformers = 0.0.24. FA = True.\n", + " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "babedf70ebf840959cf45bb51fd923d6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model.safetensors.index.json: 0%| | 0.00/25.1k [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bf575aa5ad9e491887172dc8387ef58c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading shards: 0%| | 0/2 [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "943be3936bfb4c478d519d762b3a094d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model-00001-of-00002.safetensors: 0%| | 0.00/9.94G [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a99a952c33f410ea43d6730ee481b57", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model-00002-of-00002.safetensors: 0%| | 0.00/4.54G [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fece0f520b194943940faca45945c36b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d22cbbab77144db9aa53e7e16349a3d4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "generation_config.json: 0%| | 0.00/116 [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "04b152118bce4b97b5ed3994947559ba", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/967 [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "39eaba453ca04f18abfdb51878d44ae8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "tokenizer.model: 0%| | 0.00/493k [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e6671002f09748328ba0990d3a84f46a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "tokenizer.json: 0%| | 0.00/1.80M [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6bdf41fd71b443469fda22f579665e46", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "special_tokens_map.json: 0%| | 0.00/72.0 [00:00, ?B/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from unsloth import FastLanguageModel\n", + "import torch\n", + "max_seq_length = 1792 # Choose any! We auto support RoPE Scaling internally!\n", + "dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n", + "# load_in_4bit = False\n", + "\n", + "\n", + "# 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n", + "fourbit_models = [\n", + " \"unsloth/mistral-7b-bnb-4bit\",\n", + " \"unsloth/mistral-7b-instruct-v0.1-bnb-4bit\",\n", + " \"unsloth/mistral-7b-instruct-v0.2-bnb-4bit\",\n", + " \"unsloth/llama-2-7b-bnb-4bit\",\n", + " \"unsloth/llama-2-13b-bnb-4bit\",\n", + " \"unsloth/codellama-34b-bnb-4bit\",\n", + " \"unsloth/tinyllama-bnb-4bit\",\n", + " \"unsloth/gemma-2b-bnb-4bit\",\n", + "]\n", + "\n", + "model, tokenizer = FastLanguageModel.from_pretrained(\n", + " model_name = \"mistralai/Mistral-7B-v0.1\", load_in_4bit = False,\n", + " # model_name = \"unsloth/mistral-7b-bnb-4bit\", load_in_4bit = True,\n", + " # model_name = \"unsloth/llama-2-7b-bnb-4bit\", load_in_4bit = True,\n", + " # model_name = \"unsloth/tinyllama-bnb-4bit\", load_in_4bit = True,\n", + " # model_name = \"unsloth/tinyllama-bnb-4bit\", load_in_4bit = False,\n", + " # model_name = \"google/gemma-2b\",load_in_4bit = False,\n", + " # model_name = \"unsloth/gemma-2b-bnb-4bit\", load_in_4bit = True,\n", + " max_seq_length = max_seq_length,\n", + " dtype = dtype,\n", + " token = \"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\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SXd9bTZd1aaL" + }, + "source": [ + "We now add LoRA adapters so we only need to update 1 to 10% of all parameters!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6bZsfBuZDeCL", + "outputId": "7a19202f-6ef6-4a71-cf88-004c01769255" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Unsloth 2024.2 patched 32 layers with 32 QKV layers, 32 O layers and 32 MLP layers.\n" + ] + } + ], + "source": [ + "from peft import LoftQConfig\n", + "model = FastLanguageModel.get_peft_model(\n", + " model,\n", + " r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n", + " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n", + " \"gate_proj\", \"up_proj\", \"down_proj\",],\n", + " lora_alpha = 16,\n", + " lora_dropout = 0, # Supports any, but = 0 is optimized\n", + " bias = \"none\", # Supports any, but = \"none\" is optimized\n", + " use_gradient_checkpointing = True,\n", + " random_state = 3407,\n", + " use_rslora = True, # We support rank stabilized LoRA\n", + " # init_lora_weights = 'loftq',\n", + " # loftq_config = LoftQConfig(loftq_bits = 4, loftq_iter = 1), # And LoftQ\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vITh0KVJ10qX" + }, + "source": [ + "\n", + "### Data Prep\n", + "We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n", + "\n", + "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n", + "\n", + "**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from datasets import load_dataset\n", + "from trl import SFTTrainer, DataCollatorForCompletionOnlyLM\n", + "import json\n", + "import os\n", + "cwd = os.getcwd()\n", + "kaggle = cwd == \"/kaggle/working\"\n", + "data_dir = \"/kaggle/input/masterthesis/\" if kaggle else cwd+\"/data/\"\n", + "dataset_csv = pd.read_csv(data_dir + \"dataset.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "prompt = \"\"\"\n", + "User:\n", + "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n", + "\n", + "```thread\n", + "{}\n", + "```\n", + "\n", + "\n", + "\n", + "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n", + "\n", + "Assistant:\n", + "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n", + "Hardware names: {}\n", + "Hardware ownership: {}\n", + "\n", + "\"\"\".strip()\n", + "\n", + "def formatting_prompts_func(examples, using_df = False):\n", + " output_texts = []\n", + " for i in range(len(examples['input'])):\n", + " if using_df:\n", + " output = examples.iloc[i]['output']\n", + " input = examples.iloc[i]['input']\n", + " else:\n", + " output = examples['output'][i]\n", + " input = examples['input'][i]\n", + "\n", + " # Parse the JSON output to extract hardware names and ownership status\n", + " hardware_data = json.loads(output)\n", + " hardware_names = [str(item['hardware_name']).replace(\",\",\"\") for item in hardware_data]\n", + " ownership_status = [str(item['hardware_is_owned']).replace(\",\",\"\") for item in hardware_data]\n", + " \n", + " # Format the new output as specified\n", + " formatted_names = \", \".join(hardware_names)\n", + " formatted_status = \", \".join(ownership_status)\n", + " \n", + " # Format the prompt with the new output style\n", + " text = prompt.format(input, formatted_names, formatted_status) + tokenizer.eos_token\n", + " \n", + " # if i == 0:\n", + " # print(text) # Print the first example to check the formatting\n", + " # if len(hardware_names) == 0:\n", + " # print(text) \n", + "\n", + " # if i < 50:\n", + " # print(\"formatting_prompts_func printing text\")\n", + " # print(text) \n", + " \n", + " output_texts.append(text)\n", + " return output_texts" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No hardware name found in the output\n", + "error\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'bi-metal thermostat': 'hardware_is_owned', 'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'PSU': 'hardware_is_owned', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'fan': 'hardware_is_owned', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'server power supplies': 'hardware_is_owned', 'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'IBM 2 or 2.8kw PSU': 'hardware_is_owned', 'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'GekkoScience breakouts': 'hardware_is_owned', 'hardware_is_owned': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': True}\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No hardware name found in the output\n", + "{'mining equipment': '$1.12 million worth', 'hardware_is_owned': True}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No hardware name found in the output\n", + "{'mSD': {'hardware_name': 'mSD card', 'hardware_is_owned': True}}\n", + "No hardware name found in the output\n", + "{'HP1200w platinum power supplies': 'hardware_is_owned', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "hardware_discussions\n", + "No hardware name found in the output\n", + "{'AUC serial adapter': 'hardware_is_owned', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'S5': 'S5', 'hardware_is_owned': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No hardware name found in the output\n", + "error\n", + "No hardware name found in the output\n", + "{'top card': 'top slot card', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'hardware_hashboards': 'hashboards', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No ownership status found in the output\n", + "{'hardware_name': True}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No hardware name found in the output\n", + "{'APW5 PSU': 'Bitmain', 'hardware_is_owned': True}\n", + "No ownership status found in the output\n", + "{'hardware_name': True}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No hardware name found in the output\n", + "{'power_supply': 'APW3++', 'hardware_is_owned': True}\n", + "No ownership status found in the output\n", + "{'hardware_name': False}\n", + "No hardware name found in the output\n", + "{'S17': {'hardware_name': 'S17', 'hardware_is_owned': True}}\n", + "No hardware name found in the output\n", + "{'s17 pro': '16x', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'Antminer s9': 'hardware_is_owned', 'hardware_is_owned': True}\n", + "No hardware name found in the output\n", + "{'T9+': {'hardware_name': 'T9+', 'hardware_is_owned': True}}\n", + "No hardware name found in the output\n", + "{'R4': {'hardware_name': 'R4', 'hardware_is_owned': False}}\n", + "No hardware name found in the output\n", + "{'APW 1600 power supply': {'hardware_name': 'APW 1600 power supply', 'hardware_is_owned': True}}\n", + "No hardware name found in the output\n", + "{'2300W PSU': {'hardware_name': '2300W PSU', 'hardware_is_owned': True}}\n", + "No hardware name found in the output\n", + "{'hardware_is_owned': False}\n", + "No hardware name found in the output\n", + "{'S17 pro': {'hardware_name': 'S17 pro', 'hardware_is_owned': False}}\n" + ] + } + ], + "source": [ + "dataset_csv2 = pd.DataFrame(columns=['input','output'])\n", + "for i in range(len(dataset_csv['input'])):\n", + " hardware_data = json.loads(dataset_csv.iloc[i]['output'])\n", + " # hardware_names = [str(item['hardware_name']).replace(\",\",\"\") for item in hardware_data]\n", + " # ownership_status = [str(item['hardware_is_owned']).replace(\",\",\"\") for item in hardware_data]\n", + " good_sample = True\n", + " for item in hardware_data:\n", + " if 'hardware_name' not in item:\n", + " print(\"No hardware name found in the output\")\n", + " print(item)\n", + " good_sample = False\n", + " continue\n", + " if 'hardware_is_owned' not in item:\n", + " print(\"No ownership status found in the output\")\n", + " print(item)\n", + " good_sample = False\n", + " continue\n", + " if good_sample:\n", + " dataset_csv2 = pd.concat([dataset_csv2, pd.DataFrame({'input': [dataset_csv.iloc[i]['input']], 'output': dataset_csv.iloc[i]['output']})])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2961\n", + "2925\n" + ] + } + ], + "source": [ + "print(len(dataset_csv))\n", + "print(len(dataset_csv2))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "token_counts = []\n", + "\n", + "dataset_csv3 = pd.DataFrame(columns=['input','output'])\n", + "output_texts = formatting_prompts_func(dataset_csv2, using_df = True)\n", + "for (i,output_text) in enumerate(output_texts):\n", + " token_count = len(tokenizer.encode(output_text))\n", + " token_counts.append(token_count)\n", + " if token_count < max_seq_length:\n", + " dataset_csv3 = pd.concat([dataset_csv3, pd.DataFrame({'input': [dataset_csv2.iloc[i]['input']], 'output': dataset_csv2.iloc[i]['output']})])\n", + "# plot the token counts\n", + "# import matplotlib.pyplot as plt\n", + "# plt.hist(token_counts, bins=15)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2760\n" + ] + } + ], + "source": [ + "print(len(dataset_csv3))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "token_counts = []\n", + "output_texts = formatting_prompts_func(dataset_csv3, using_df = True)\n", + "for (i,output_text) in enumerate(output_texts):\n", + " token_count = len(tokenizer.encode(output_text))\n", + " token_counts.append(token_count)\n", + "\n", + "# plot the token counts\n", + "# plt.hist(token_counts, bins=15)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# dataset_csv = dataset_csv3.sample(30,random_state=42)\n", + "dataset_csv = dataset_csv3" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "train, val = train_test_split(dataset_csv, test_size=0.01, random_state=42)\n", + "train.to_csv(data_dir + \"train/train.csv\", index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2732\n" + ] + }, + { + "data": { + "text/html": [ + "| \n", + " | input | \n", + "output | \n", + "
|---|---|---|
| 0 | \n", + "Date: 2021-12\\nTopic: minersspace.com legit?\\n... | \n", + "[\\n {\\n \"hardware_name\": \"S19Pros\",\\n \"... | \n", + "
| Step | \n", + "Training Loss | \n", + "
|---|---|
| 1 | \n", + "0.598000 | \n", + "
| 2 | \n", + "0.743500 | \n", + "
| 3 | \n", + "0.518100 | \n", + "
| 4 | \n", + "0.495800 | \n", + "
| 5 | \n", + "0.401400 | \n", + "
| 6 | \n", + "0.506100 | \n", + "
| 7 | \n", + "0.502200 | \n", + "
| 8 | \n", + "0.306500 | \n", + "
| 9 | \n", + "0.367600 | \n", + "
| 10 | \n", + "0.426900 | \n", + "
| 11 | \n", + "0.370500 | \n", + "
| 12 | \n", + "0.358400 | \n", + "
| 13 | \n", + "0.400800 | \n", + "
| 14 | \n", + "0.257600 | \n", + "
| 15 | \n", + "0.449500 | \n", + "
| 16 | \n", + "0.524900 | \n", + "
| 17 | \n", + "0.419900 | \n", + "
| 18 | \n", + "0.425000 | \n", + "
| 19 | \n", + "0.479300 | \n", + "
| 20 | \n", + "0.447400 | \n", + "
| 21 | \n", + "0.321900 | \n", + "
| 22 | \n", + "0.377400 | \n", + "
| 23 | \n", + "0.337600 | \n", + "
| 24 | \n", + "0.365400 | \n", + "
| 25 | \n", + "0.433800 | \n", + "
| 26 | \n", + "0.402200 | \n", + "
| 27 | \n", + "0.434600 | \n", + "
| 28 | \n", + "0.456500 | \n", + "
| 29 | \n", + "0.316200 | \n", + "
| 30 | \n", + "0.270800 | \n", + "
| 31 | \n", + "0.319800 | \n", + "
| 32 | \n", + "0.483400 | \n", + "
| 33 | \n", + "0.305000 | \n", + "
| 34 | \n", + "0.306100 | \n", + "
| 35 | \n", + "0.380000 | \n", + "
| 36 | \n", + "0.337200 | \n", + "
| 37 | \n", + "0.434800 | \n", + "
| 38 | \n", + "0.342400 | \n", + "
| 39 | \n", + "0.355100 | \n", + "
| 40 | \n", + "0.398700 | \n", + "
| 41 | \n", + "0.314700 | \n", + "
| 42 | \n", + "0.252000 | \n", + "
| 43 | \n", + "0.388900 | \n", + "
| 44 | \n", + "0.291200 | \n", + "
| 45 | \n", + "0.294400 | \n", + "
| 46 | \n", + "0.342200 | \n", + "
| 47 | \n", + "0.299100 | \n", + "
| 48 | \n", + "0.313100 | \n", + "
| 49 | \n", + "0.332200 | \n", + "
| 50 | \n", + "0.390700 | \n", + "
| 51 | \n", + "0.212300 | \n", + "
| 52 | \n", + "0.227300 | \n", + "
| 53 | \n", + "0.295200 | \n", + "
| 54 | \n", + "0.296600 | \n", + "
| 55 | \n", + "0.477000 | \n", + "
| 56 | \n", + "0.411900 | \n", + "
| 57 | \n", + "0.387600 | \n", + "
| 58 | \n", + "0.308900 | \n", + "
| 59 | \n", + "0.284800 | \n", + "
| 60 | \n", + "0.310100 | \n", + "
| 61 | \n", + "0.221600 | \n", + "
| 62 | \n", + "0.306400 | \n", + "
| 63 | \n", + "0.260100 | \n", + "
| 64 | \n", + "0.263000 | \n", + "
| 65 | \n", + "0.260500 | \n", + "
| 66 | \n", + "0.286900 | \n", + "
| 67 | \n", + "0.531200 | \n", + "
| 68 | \n", + "0.239300 | \n", + "
| 69 | \n", + "0.312600 | \n", + "
| 70 | \n", + "0.306700 | \n", + "
| 71 | \n", + "0.457200 | \n", + "
| 72 | \n", + "0.382100 | \n", + "
| 73 | \n", + "0.371900 | \n", + "
| 74 | \n", + "0.460300 | \n", + "
| 75 | \n", + "0.308900 | \n", + "
| 76 | \n", + "0.425900 | \n", + "
| 77 | \n", + "0.343400 | \n", + "
| 78 | \n", + "0.279500 | \n", + "
| 79 | \n", + "0.367100 | \n", + "
| 80 | \n", + "0.339000 | \n", + "
| 81 | \n", + "0.307200 | \n", + "
| 82 | \n", + "0.251500 | \n", + "
| 83 | \n", + "0.188500 | \n", + "
| 84 | \n", + "0.323100 | \n", + "
| 85 | \n", + "0.331600 | \n", + "
| 86 | \n", + "0.267500 | \n", + "
| 87 | \n", + "0.247800 | \n", + "
| 88 | \n", + "0.282300 | \n", + "
| 89 | \n", + "0.349600 | \n", + "
| 90 | \n", + "0.356700 | \n", + "
| 91 | \n", + "0.377000 | \n", + "
| 92 | \n", + "0.236300 | \n", + "
| 93 | \n", + "0.214900 | \n", + "
| 94 | \n", + "0.201700 | \n", + "
| 95 | \n", + "0.177300 | \n", + "
| 96 | \n", + "0.201800 | \n", + "
| 97 | \n", + "0.339200 | \n", + "
| 98 | \n", + "0.399200 | \n", + "
| 99 | \n", + "0.437700 | \n", + "
| 100 | \n", + "0.343300 | \n", + "
| 101 | \n", + "0.376600 | \n", + "
| 102 | \n", + "0.191000 | \n", + "
| 103 | \n", + "0.248800 | \n", + "
| 104 | \n", + "0.254700 | \n", + "
| 105 | \n", + "0.229600 | \n", + "
| 106 | \n", + "0.341400 | \n", + "
| 107 | \n", + "0.287500 | \n", + "
| 108 | \n", + "0.411300 | \n", + "
| 109 | \n", + "0.377100 | \n", + "
| 110 | \n", + "0.350900 | \n", + "
| 111 | \n", + "0.236600 | \n", + "
| 112 | \n", + "0.380200 | \n", + "
| 113 | \n", + "0.309700 | \n", + "
| 114 | \n", + "0.408700 | \n", + "
| 115 | \n", + "0.222800 | \n", + "
| 116 | \n", + "0.366200 | \n", + "
| 117 | \n", + "0.162300 | \n", + "
| 118 | \n", + "0.435200 | \n", + "
| 119 | \n", + "0.338500 | \n", + "
| 120 | \n", + "0.319700 | \n", + "
| 121 | \n", + "0.308500 | \n", + "
| 122 | \n", + "0.371400 | \n", + "
| 123 | \n", + "0.327200 | \n", + "
| 124 | \n", + "0.360500 | \n", + "
| 125 | \n", + "0.297200 | \n", + "
| 126 | \n", + "0.382600 | \n", + "
| 127 | \n", + "0.169900 | \n", + "
| 128 | \n", + "0.492000 | \n", + "
| 129 | \n", + "0.300000 | \n", + "
| 130 | \n", + "0.263900 | \n", + "
| 131 | \n", + "0.291600 | \n", + "
| 132 | \n", + "0.148200 | \n", + "
| 133 | \n", + "0.325800 | \n", + "
| 134 | \n", + "0.294400 | \n", + "
| 135 | \n", + "0.214200 | \n", + "
| 136 | \n", + "0.405900 | \n", + "
| 137 | \n", + "0.315000 | \n", + "
| 138 | \n", + "0.250800 | \n", + "
| 139 | \n", + "0.367800 | \n", + "
| 140 | \n", + "0.305000 | \n", + "
| 141 | \n", + "0.228000 | \n", + "
| 142 | \n", + "0.231900 | \n", + "
| 143 | \n", + "0.337700 | \n", + "
| 144 | \n", + "0.205100 | \n", + "
| 145 | \n", + "0.184700 | \n", + "
| 146 | \n", + "0.305200 | \n", + "
| 147 | \n", + "0.265300 | \n", + "
| 148 | \n", + "0.275100 | \n", + "
| 149 | \n", + "0.250200 | \n", + "
| 150 | \n", + "0.183200 | \n", + "
| 151 | \n", + "0.313900 | \n", + "
| 152 | \n", + "0.313400 | \n", + "
| 153 | \n", + "0.209900 | \n", + "
| 154 | \n", + "0.231700 | \n", + "
| 155 | \n", + "0.177200 | \n", + "
| 156 | \n", + "0.176100 | \n", + "
| 157 | \n", + "0.271500 | \n", + "
| 158 | \n", + "0.184600 | \n", + "
| 159 | \n", + "0.279400 | \n", + "
| 160 | \n", + "0.354600 | \n", + "
| 161 | \n", + "0.376500 | \n", + "
| 162 | \n", + "0.206400 | \n", + "
| 163 | \n", + "0.271000 | \n", + "
| 164 | \n", + "0.271400 | \n", + "
| 165 | \n", + "0.396800 | \n", + "
| 166 | \n", + "0.308600 | \n", + "
| 167 | \n", + "0.311500 | \n", + "
| 168 | \n", + "0.310500 | \n", + "
| 169 | \n", + "0.197300 | \n", + "
| 170 | \n", + "0.239900 | \n", + "
| 171 | \n", + "0.336900 | \n", + "
| 172 | \n", + "0.186800 | \n", + "
| 173 | \n", + "0.213500 | \n", + "
| 174 | \n", + "0.313300 | \n", + "
| 175 | \n", + "0.221900 | \n", + "
| 176 | \n", + "0.345800 | \n", + "
| 177 | \n", + "0.311200 | \n", + "
| 178 | \n", + "0.295500 | \n", + "
| 179 | \n", + "0.182000 | \n", + "
| 180 | \n", + "0.252900 | \n", + "
| 181 | \n", + "0.377900 | \n", + "
| 182 | \n", + "0.271100 | \n", + "
| 183 | \n", + "0.314900 | \n", + "
| 184 | \n", + "0.226800 | \n", + "
| 185 | \n", + "0.225900 | \n", + "
| 186 | \n", + "0.279800 | \n", + "
| 187 | \n", + "0.294600 | \n", + "
| 188 | \n", + "0.187100 | \n", + "
| 189 | \n", + "0.186000 | \n", + "
| 190 | \n", + "0.161800 | \n", + "
| 191 | \n", + "0.218100 | \n", + "
| 192 | \n", + "0.286300 | \n", + "
| 193 | \n", + "0.262700 | \n", + "
| 194 | \n", + "0.296500 | \n", + "
| 195 | \n", + "0.361900 | \n", + "
| 196 | \n", + "0.223700 | \n", + "
| 197 | \n", + "0.227200 | \n", + "
| 198 | \n", + "0.317100 | \n", + "
| 199 | \n", + "0.399600 | \n", + "
| 200 | \n", + "0.315600 | \n", + "
| 201 | \n", + "0.314000 | \n", + "
| 202 | \n", + "0.209600 | \n", + "
| 203 | \n", + "0.185900 | \n", + "
| 204 | \n", + "0.287200 | \n", + "
| 205 | \n", + "0.284600 | \n", + "
| 206 | \n", + "0.217400 | \n", + "
| 207 | \n", + "0.243900 | \n", + "
| 208 | \n", + "0.234200 | \n", + "
| 209 | \n", + "0.179100 | \n", + "
| 210 | \n", + "0.205800 | \n", + "
| 211 | \n", + "0.180700 | \n", + "
| 212 | \n", + "0.232900 | \n", + "
| 213 | \n", + "0.226200 | \n", + "
| 214 | \n", + "0.196100 | \n", + "
| 215 | \n", + "0.350900 | \n", + "
| 216 | \n", + "0.212200 | \n", + "
| 217 | \n", + "0.203800 | \n", + "
| 218 | \n", + "0.174700 | \n", + "
| 219 | \n", + "0.266300 | \n", + "
| 220 | \n", + "0.172400 | \n", + "
| 221 | \n", + "0.203200 | \n", + "
| 222 | \n", + "0.233300 | \n", + "
| 223 | \n", + "0.235200 | \n", + "
| 224 | \n", + "0.159300 | \n", + "
| 225 | \n", + "0.228000 | \n", + "
| 226 | \n", + "0.233000 | \n", + "
| 227 | \n", + "0.211400 | \n", + "
| 228 | \n", + "0.207500 | \n", + "
| 229 | \n", + "0.185600 | \n", + "
| 230 | \n", + "0.200700 | \n", + "
| 231 | \n", + "0.261600 | \n", + "
| 232 | \n", + "0.142100 | \n", + "
| 233 | \n", + "0.231500 | \n", + "
| 234 | \n", + "0.272200 | \n", + "
| 235 | \n", + "0.217600 | \n", + "
| 236 | \n", + "0.300100 | \n", + "
| 237 | \n", + "0.272300 | \n", + "
| 238 | \n", + "0.171800 | \n", + "
| 239 | \n", + "0.272300 | \n", + "
| 240 | \n", + "0.209800 | \n", + "
| 241 | \n", + "0.235300 | \n", + "
| 242 | \n", + "0.299000 | \n", + "
| 243 | \n", + "0.238000 | \n", + "
| 244 | \n", + "0.215200 | \n", + "
| 245 | \n", + "0.248600 | \n", + "
| 246 | \n", + "0.218300 | \n", + "
| 247 | \n", + "0.307400 | \n", + "
| 248 | \n", + "0.196900 | \n", + "
| 249 | \n", + "0.217500 | \n", + "
| 250 | \n", + "0.254900 | \n", + "
| 251 | \n", + "0.225700 | \n", + "
| 252 | \n", + "0.317300 | \n", + "
| 253 | \n", + "0.244500 | \n", + "
| 254 | \n", + "0.189100 | \n", + "
| 255 | \n", + "0.212900 | \n", + "
| 256 | \n", + "0.193900 | \n", + "
| 257 | \n", + "0.254900 | \n", + "
| 258 | \n", + "0.211600 | \n", + "
| 259 | \n", + "0.267700 | \n", + "
| 260 | \n", + "0.130000 | \n", + "
| 261 | \n", + "0.313900 | \n", + "
| 262 | \n", + "0.222600 | \n", + "
| 263 | \n", + "0.210100 | \n", + "
| 264 | \n", + "0.333100 | \n", + "
| 265 | \n", + "0.190900 | \n", + "
| 266 | \n", + "0.132500 | \n", + "
| 267 | \n", + "0.274000 | \n", + "
| 268 | \n", + "0.270700 | \n", + "
| 269 | \n", + "0.180600 | \n", + "
| 270 | \n", + "0.251400 | \n", + "
| 271 | \n", + "0.149500 | \n", + "
| 272 | \n", + "0.297900 | \n", + "
| 273 | \n", + "0.285200 | \n", + "
| 274 | \n", + "0.213600 | \n", + "
| 275 | \n", + "0.143200 | \n", + "
| 276 | \n", + "0.247600 | \n", + "
| 277 | \n", + "0.179400 | \n", + "
| 278 | \n", + "0.268200 | \n", + "
| 279 | \n", + "0.196900 | \n", + "
| 280 | \n", + "0.198800 | \n", + "
| 281 | \n", + "0.122500 | \n", + "
| 282 | \n", + "0.203000 | \n", + "
| 283 | \n", + "0.248000 | \n", + "
| 284 | \n", + "0.213400 | \n", + "
| 285 | \n", + "0.153000 | \n", + "
| 286 | \n", + "0.291500 | \n", + "
| 287 | \n", + "0.209700 | \n", + "
| 288 | \n", + "0.236000 | \n", + "
| 289 | \n", + "0.260900 | \n", + "
| 290 | \n", + "0.268000 | \n", + "
| 291 | \n", + "0.303300 | \n", + "
| 292 | \n", + "0.191200 | \n", + "
| 293 | \n", + "0.221200 | \n", + "
| 294 | \n", + "0.286800 | \n", + "
| 295 | \n", + "0.146800 | \n", + "
| 296 | \n", + "0.188300 | \n", + "
| 297 | \n", + "0.241800 | \n", + "
| 298 | \n", + "0.242600 | \n", + "
| 299 | \n", + "0.297900 | \n", + "
| 300 | \n", + "0.174300 | \n", + "
| 301 | \n", + "0.187600 | \n", + "
| 302 | \n", + "0.170500 | \n", + "
| 303 | \n", + "0.244400 | \n", + "
| 304 | \n", + "0.296000 | \n", + "
| 305 | \n", + "0.181500 | \n", + "
| 306 | \n", + "0.224000 | \n", + "
| 307 | \n", + "0.222500 | \n", + "
| 308 | \n", + "0.244300 | \n", + "
| 309 | \n", + "0.177600 | \n", + "
| 310 | \n", + "0.186200 | \n", + "
| 311 | \n", + "0.213500 | \n", + "
| 312 | \n", + "0.303700 | \n", + "
| 313 | \n", + "0.285600 | \n", + "
| 314 | \n", + "0.142300 | \n", + "
| 315 | \n", + "0.256400 | \n", + "
| 316 | \n", + "0.183500 | \n", + "
| 317 | \n", + "0.292100 | \n", + "
| 318 | \n", + "0.241700 | \n", + "
| 319 | \n", + "0.300800 | \n", + "
| 320 | \n", + "0.183900 | \n", + "
| 321 | \n", + "0.454000 | \n", + "
| 322 | \n", + "0.281900 | \n", + "
| 323 | \n", + "0.189300 | \n", + "
| 324 | \n", + "0.270000 | \n", + "
| 325 | \n", + "0.222100 | \n", + "
| 326 | \n", + "0.111800 | \n", + "
| 327 | \n", + "0.220700 | \n", + "
| 328 | \n", + "0.203100 | \n", + "
| 329 | \n", + "0.288800 | \n", + "
| 330 | \n", + "0.202300 | \n", + "
| 331 | \n", + "0.186400 | \n", + "
| 332 | \n", + "0.187100 | \n", + "
| 333 | \n", + "0.159900 | \n", + "
| 334 | \n", + "0.178700 | \n", + "
| 335 | \n", + "0.185000 | \n", + "
| 336 | \n", + "0.180500 | \n", + "
| 337 | \n", + "0.214200 | \n", + "
| 338 | \n", + "0.205300 | \n", + "
| 339 | \n", + "0.174600 | \n", + "
| 340 | \n", + "0.130800 | \n", + "
| 341 | \n", + "0.137800 | \n", + "
| 342 | \n", + "0.346400 | \n", + "
"
+ ],
+ "text/plain": [
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2014-02\n",
+ "Topic: PCIe Riser Cable only working in 1 of 5 x16PCIe slots...\n",
+ "### Original post:\n",
+ "Good morning everyone!Last night I decided to try and consolidate a few mini-rigs that I had and put 4 GPUs on one motherboard instead of having them spaced out between 3 PCs that were set up to mine when idle.Anyways, I built the rig, got the cards raised with PCIe x1 to x16 risers. Everything looked sweet and ready to go, but then when I fired it up the only card that was recognized while on a riser was the one in the PCIE4 slot. I tried the following to no avail:1) Tried switching the risers out to see if the cards would pick up in the other slots with the confirmed working riser2) Tried removing the risers, getting the cards to be recognized in Windows 7, then rising them3) Tried swapping the cards around to ensure that all cards could be recognized in PCIE4 with a riser - they could but no other spot recognizes any card with the risersAfter that, I decided to just try and get all 4 of the cards mining to see how it goes, so I put a card in PCIE1, PCIE5, and PCIE6 and used the riser in PCIE4. Success... for about 5 minutes. Had all of the cards hashing away and then after a few minutes GPU3 got sick, then the computer froze and wouldn't restart. I removed GPU3, got the computer\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"GPUs\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"motherboard\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PCIe x1 to x16 risers\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PCIE4 slot\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Windows 7\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"ohm resistors\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"dummy plugs\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 1:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2023-03\n",
+ "Topic: Avalon 1166 Pro Hashboard Help\n",
+ "### Original post:\n",
+ "Hello,After some time working with my Avalon 1166Pro 81th, one hashboard started to have problems, showing this code \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Avalon 1166Pro 81th\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"ceramic capacitor\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"multimeter\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Avalon tester\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 2:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2016-12\n",
+ "Topic: Question about mining hardware\n",
+ "### Original post:\n",
+ "Is it possible to reprogram preexisting hardware such as an antminer s6 to work with other currencies?\n",
+ "\n",
+ "### Reply 1:\n",
+ "1. There is no such miner as Antminer S6.2. Yes, they can mine any SHA-256 cryptocurrency.\n",
+ "\n",
+ "### Reply 2:\n",
+ "But you have to weigh up the cost of actually mining a different sha256 coin as most aren't worth mining as that aren't worth that much. But if you're not worried about profit and doing it as a hobby then go for it.\n",
+ "\n",
+ "### Reply 3:\n",
+ "any experience with zcash? would I know it uses a different hash algorithm, would it be worth it to even use ACIS or FPGA hardware with that hashing?\n",
+ "\n",
+ "### Reply 4:\n",
+ "Personally I've never looked into zcash. If it doesn't use an algorithm which someone has already produced an ASIC for then you'll have to use GPUs, which means you'd get more help in the altcoins section\n",
+ "\n",
+ "### Reply 5:\n",
+ "I think you need to look into how the coins work a bit more. there are different methods to mining, not all miners or mining methods work on all coins.Sha256 is what the asic miners will mine. GPU is used for others. etc.\n",
+ "\n",
+ "### Reply 6:\n",
+ "Zcash has a different algo that's only supported by gpus for now and it's price is steadily dropping. Block reward is linearly increasing but it's likely that the coin will only be viable for a little while. I'd suggest XMR and ETH (4GB gpu as DAG is growing) if you're new to the scene. ASICS are generally only for X-based coins and Quark as well as Scrypt and SHA256. This is basic info and more can be found here as well as on other sites. Make sure your electrical cost is below 0.1$/kwh first, else you won't make much mining.\n",
+ "\n",
+ "### Reply 7:\n",
+ "Asics cannot be reprogrammed. They are capable of calculating a single algorithm...with the exception of that baikal miner and any FPGA's, you can reprogram the controller by pointing it towards a different pool via command line or IP connection.You can mine anything that is compatible with the asic's predetermined algorithm.Once you figure out how to run your asic...please be careful and do your own research\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: Antminer S6, ACIS, FPGA, GPUs, ASIC, 4GB gpu, baikal miner, FPGA\n",
+ "Hardware ownership: False, False, False, False, False, False, False, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer S6\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"ASIC\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"FPGA\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"GPU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Baikal miner\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 3:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2020-02\n",
+ "Topic: Antminer S17+ problems\n",
+ "### Original post:\n",
+ "Good night forum friends My situation is as follows, I bought an Antminer S 17+ 70ths and for 1 month it worked well but now recently it works for 2-3 hours and then the hash rate starts to decrease and then loses the connection. I tried to upgrade, reset, change power cables, network and nothing. Today I found that I already have only 2 hash boards active Can someone help me?Thanks\n",
+ "\n",
+ "### Reply 1:\n",
+ "s17+t17+s17et17edo not run well. Most likely you will end up screwed unless bitmain releases better firmware.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: Antminer S 17+ 70ths, power cables, network, hash boards, s17+t17+s17e, t17+s17e\n",
+ "Hardware ownership: True, True, True, True, False, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer S 17+ 70ths\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"s17\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"t17\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"s17e\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"t17e\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 4:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2016-02\n",
+ "Topic: Pics of your home mining rigs if you will!\n",
+ "### Original post:\n",
+ "Hello all of you! I am working on a blog about bitcoin for a terminology class in university, and I would like to have permission to post some pics of your mining rigs. I can't simply search for pics as I need to give credit to the pic's owner, so, if some of you would be so gracious to, please send me pics of your rigs! Thanks.\n",
+ "\n",
+ "### Reply 1:\n",
+ "In case the mods don't like you starting another thread for this. The main one is here; don't think people will mind, but you can always ask there.\n",
+ "\n",
+ "### Reply 2:\n",
+ "Thank you\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: \n",
+ "Hardware ownership: \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 5:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2014-06\n",
+ "Topic: Intel MIC mining software\n",
+ "### Original post:\n",
+ "I have a window host with a Intel Phi. I want to mine with cpuminer with native mode. But it does not work.So I want to know are there any mining softwares with Intel MIC?\n",
+ "\n",
+ "### Reply 1:\n",
+ "What you've checked the command to run?try to provide a screenshot to more easily observe your problem\n",
+ "\n",
+ "### Reply 2:\n",
+ "Probably obsolete by the time it's released, if not already. Unless you want to mine Litecoins.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: Intel Phi\n",
+ "Hardware ownership: True\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Intel Phi\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 6:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2013-07\n",
+ "Topic: Hosting BFL miners at J Morgan & Associates?\n",
+ "### Original post:\n",
+ "Make sure you do your due diligence prior to signing on the dotted line. Make sure you know exactly who you're conducting business with.A quick reminder: June 14, 2006: those not aware, Community Hosting is a company that Josh of BFL owns. The address for the Bryant Building is 1102 GRAND, KC, virtually across the street from where BFL first used as their office/mailing address.Another data center located even closer is 1100 S Walnut, KC. I'll explain the significance of that address in a sec, but first here's the map showing its location in relationship to 25 E 12th St., KC, BFL's address still used on BitPay's site.Note the 1102 Grand address in the image above, better showcased below:The Zaina restaurant could be seen from the 1100 S Walnut St. address.It's common knowledge that these addresses are related: you can see, the relationship between Josh, Aaron and Joe stem over seven years.Josh has been hosting FPGAs at at least one of the above addresses for over a year. Do you really believe he's going to give up such a lucrative endeavor to J. Morgan and Associates, or is it more likely that Josh, Aaron and Joe make up said endeavor?\n",
+ "\n",
+ "### Reply 1:\n",
+ "shit just got real\n",
+ "\n",
+ "### Reply 2:\n",
+ " is part of the Hosting Provider. phone number used for kcmocolo.com is the same one used for Joe's dad, Kevin, when he ran for polical office: \n",
+ "\n",
+ "### Reply 3:\n",
+ "I'm just gettin' warmed up!\n",
+ "\n",
+ "### Reply 4:\n",
+ "Read it all, still not sure what you are claiming though. tldr?\n",
+ "\n",
+ "### Reply 5:\n",
+ "tldr; found a bunch of names and addresses while using Google.\n",
+ "\n",
+ "### Reply 6:\n",
+ "She's a witch! Burn her! Err...him! What?\n",
+ "\n",
+ "### Reply 7:\n",
+ "I've signed up at kcmocolo/J. Morgan for hosting some Single SC's, though they haven't been delivered there, yet.It looks like they're affiliated with Joe's Data Center \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Single SC's\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_is_owned\": false,\n",
+ " \"hardware_name\": \"FPGAs\"\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 7:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2018-03\n",
+ "Topic: Hardware issues with Antminer s5 - Specific red lights need help with diagnosing\n",
+ "### Original post:\n",
+ "Hi guys,Fairly new to mining and first time posting.In short I recently bought a second hand Antminer s5 as a cheap introduction to mining.It worked, as far as I can tell, 100% for the first period I had it. However now it displays some red lights and a lot of hardware issues on my miner status screen.It still mines and at times still hits 1.1TH (full capacity) but it can drop down to zero for a few hours at a time before kicking back into gear.For example today it has averaged 300GH/s for the day and for the last hour about 950GH/s. So it still mines,just not at 100% efficiency or consistently.So there is a red light behind the front left and back right PCI connectors (If you are standing facing the fan and ethernet slot) and also one on the green hashing board on the top side, it is situated by the Antminer logo, I believe it corresponds to D5.Haven't had any luck online finding what the lights correspond to.Pictures are attached.Thanks for any help guys. note: This post was edited by frodocooper to remove inline image tags.)\n",
+ "\n",
+ "### Reply 1:\n",
+ "Well first good idea starting small I did the same with s5's last June. What I found though is that these have had many hard years of abuse. The best thing you can do is monitor your temperatures and see if maybe things aren't getting to hot causing it to shutdown. You can also remove the casing and look for anything that appears loose or faulty.I did notice a bit of dust to, no where near as much as mine came with but it might benefit from a good cleaning\n",
+ "\n",
+ "### Reply 2:\n",
+ "Post pics of the miner's gui status screen. That may help.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: Antminer s5, PCI connectors, green hashing board, casing\n",
+ "Hardware ownership: True, True, True, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer s5\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PCI connectors\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"green hashing board\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 8:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2013-08\n",
+ "Topic: Consolidated BFL Board Development Thread\n",
+ "### Original post:\n",
+ "I'm starting this thread as a place where people can check in and collaborate on the development of a board (or boards) that can use the BFL ASIC chips. This is not a group buy or a lets-bash-BFL thread. Once a board design is established, cooling issues and case design can be discussed later.Note: I'm only starting this thread to organize all efforts into one place. I myself can't really design anything. I'm not an EE, and I don't know what I'm doing. I will help out where I can, tho.Ok here's the information we have available:BFL's Order Page. That page also has some basic specs:Those reference documents mentioned have already been released. The Jalapeno's board schematics and PCB can be found HERE. The SC Firmware Source Code was release HERE. If you have any issues downloading those files, I can send them to ya by some other means.I see we've got a few people already working on designs, but if you guys want to coordinate here, that would be great!\n",
+ "\n",
+ "### Reply 1:\n",
+ "I want to just post my initial ideas and tired ramblings. This really doesn't have any bearing on the rest of this discussion.The BFL chips are a lot more dense than Avalon or ASICMiner chips, for both power and heat, cramming 4GH/s into a 7.5x7.5mm die. A board like the original Avalon or K64 where the chips are all spread out and share one giant heatsink prolly wont work very well. I mean we could put a little VGA heatsink with a tiny fan on each individual chip, but that gets expensive fast. A giant heatsink like the original Avalon won't work, because unlike the Avalon, if one chip isn't making good contact with the heatsink, it will overheat. For power, those K16s use an estimated 32W for 16 chips, while a Jalapeno uses that much for 2 chips. If we wanted a full 16 chip board, we're looking at ~250Watts. Now BFL dealt with the heat limitations by grouping all the chips up in the center, and using one heatsink (with a large enough base) to cover each group of 6/8 chips, and cool them all at once. They're using a thermal pad instead of thermal paste to account for the potential for a height difference, although it is such a small area it can't be that much of a difference betwee\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"BFL ASIC chips\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Jalapeno\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Avalon miner\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"K64\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"K16\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"minirig 500Ghs\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"5Gh/s Jal\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 9:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2020-10\n",
+ "Topic: S17+ (70TH) Hashchain missing (but not always)\n",
+ "### Original post:\n",
+ "Firstly, yes, that is usual thing for 17th series of Antminers, and you have a sign of dying hashboard. Lose heatsink is most probable cause and there is not much if anything that you can do.You can try putting it on one of the sides and gravity might help you. But since it is occasionally working fine, I'd recommend you to turn it on and when you see it having three boards up, do not turn it off EVER again. And pray to electricity gods that you won't have blackouts or brownouts.Secondly, I am not sure why are you turning it off every night nor why are you \"letting it cool down\". There is not much benefit to second thing you are doing and first thing is obvious, you lose up to or more than 12h per day of your earnings. That way, you will never get ROI on it, let alone earn anything after it, especially if you do not have free \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"S17+ (70TH)\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"hashboard\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PSU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"S9\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"63th t17+\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 10:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2017-04\n",
+ "Topic: Need Coaching About Bitcoin And Alt Coin\n",
+ "### Original post:\n",
+ "Hello i need coaching how to mining btc and alt coini need to know step by stop how to miningI will pay for it if its affordable.this is my country kWH detailsFor the first 200 kWh (1 - 200 kWh) per month around 4.75usdFor the next 100 kWh (201 - 300 kWh) per \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"mining rig\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"antminer s-9\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"pc\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"high end hardware for mining\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"ASIC units\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"GPU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"video card\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PSU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 11:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2013-11\n",
+ "Topic: script which lowers RPM when temp is too high on GPU for cgminer\n",
+ "### Original post:\n",
+ "Does anyone know of or have suggestions on how to write a script which would turn down the RPM on individual GPU's when their temperature gets too high? Needs to work with cgminer.\n",
+ "\n",
+ "### Reply 1:\n",
+ "Are you insane? Your cards would die that way. Why would you want that?\n",
+ "\n",
+ "### Reply 2:\n",
+ "Perhaps I'm saying this wrong or perhaps I'm misunderstanding how these things work. What I'm trying to say is, is there some program that when the GPU's are working to hard or the air conditioning is off for some reason then it will tell cgminer to make itself stop making the cards work as hard so that the cards can cool down and don't burn out.\n",
+ "\n",
+ "### Reply 3:\n",
+ "It's already built into cgminer with the auto fan and auto gpu options, but only for AMD cards.\n",
+ "\n",
+ "### Reply 4:\n",
+ "cgminer --auto-fanWorks nicely for all my 79XX GPU's except Powercolor 7990 which has a screwed up fan setup anyways.\n",
+ "\n",
+ "### Reply 5:\n",
+ "RPM = Revolutions Per Minute.Lowering RPM is slowing the fan down. The total opposite of what you want to do.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: GPU, cgminer, 79XX GPU, Powercolor 7990\n",
+ "Hardware ownership: False, False, True, True\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"GPU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"AMD cards\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"79XX GPU's\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Powercolor 7990\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 12:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2018-08\n",
+ "Topic: Canaan 821 to 841 firmware swap\n",
+ "### Original post:\n",
+ "Iv'e searched around and have not found an answer. Since the 821's and 841's use the same hardware, is it possible for load the 841's firmware on the 821?\n",
+ "\n",
+ "### Reply 1:\n",
+ "Short answer no. The 821 will not like being told it is an 841; not even sure if it would load properly.Are you trying to get more power out of your 821? Best bet is to play around with your voltage settings to see if you can squeeze a little more out of it.\n",
+ "\n",
+ "### Reply 2:\n",
+ "it was a thought, i have 2-821's that I am going to start back up. I'll just mess with the settings like you said. Depending on how bored I get, i might see about compiling my own firmware.Thanks.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: Canaan 821, Canaan 841\n",
+ "Hardware ownership: True, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"821\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"841\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 13:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2018-06\n",
+ "Topic: URGENT ADVICE NEEDED - MINING ANTMINER NEW SEA SHORE\n",
+ "### Original post:\n",
+ "HiI am moving my house near sea shore. Is it safe to mine there? Its just 3 Kilometers (1.86 Miles) away from sea. Everything get rust very fast there.Is it ok, or find alternates like remote mining?Please reply soonest, I need to pack fast.\n",
+ "\n",
+ "### Reply 1:\n",
+ "I live in a very humid area and there is nothing I can do about humidity for my miners. However, I think S9s are protected against corrosion, as the only rusty parts on my miners are the grates for the fans.I think you will be ok\n",
+ "\n",
+ "### Reply 2:\n",
+ "I would definitely not recommend. The miners I work on are all only 5-10km from shore and the rust seems to affect everything. Quickly I noticed the fan grates only rusting, but then even the fans themselves and then the hashboards start to rust dead as well\n",
+ "\n",
+ "### Reply 3:\n",
+ "Air filters by the intake and outlet fans in a big must. It will keep some moisture out a dehumidifier would be good if it is a very small mine but you just got to keep up with maintenance and check the psu cables on the miner and psu for bad corrosion as they will short and or burn\n",
+ "\n",
+ "### Reply 4:\n",
+ "For a general discussion, how long does it take to cause problems in humidity? Has anyone had failure due to keeping a miner outside in an area with heavy humidity? I.e. heavy humidity such as tropics, or FL?It's getting to the point where any hardware older than a year may need to be dumped and new ASIC's bought as the specs just get better and you save on electric? Unless you have Solar? Right? So If it takes a year, does it matter?My guess is in heavy humidity with salt air it can corrode in a few months? But in non-salt it should last longer and at least a year, but I really do not know. Looking at the internals. Excluding the fan coolers etc. you do have boards which should not last in humidity right? I run mine now in HVAC controlled environment, but I have thought about running mine outside (controlled and covered) a few hundred miles off the shore line in PA that has humidity, but no salt air. Just thought it was worth the discussion?\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: Antminer, S9, fan grates, fans, hashboards, Air filters, psu cables, psu, ASIC's\n",
+ "Hardware ownership: True, True, True, True, True, True, True, True, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"S9 miners\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"miners\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"fan grates\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"fans\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"hashboards\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Air filters\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"dehumidifier\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"psu cables\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"psu\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"ASIC's\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Solar\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"HVAC controlled environment\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 14:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2020-01\n",
+ "Topic: T3-50T amperage on one of my board block at chip UT1\n",
+ "### Original post:\n",
+ "I tried to repair the first board on my T3 and my signal SDO doesn't go through chip UT1.I change the chip 3 times but the problem remain.I notice that the amperage keep rising when the board get hotter and stop at 10A after that all signal go trough chip UT1 but they are messed upcan anyone help me on this?\n",
+ "\n",
+ "### Reply 1:\n",
+ "How are you trying to change the chip? What tools/heat \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"T3\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"chip UT1\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"heat sink\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"QFN chip\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 15:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2012-07\n",
+ "Topic: Best option for someone GPU mining?\n",
+ "### Original post:\n",
+ "ltc mining is most profitable at the moment, besides that you could pool hop or just mine on regular pools. Im just mining on p2pool atm and that's been going well the last few weeks.\n",
+ "\n",
+ "### Reply 1:\n",
+ "Well I haven't been here in months and so I've missed a lot. I see that FPGA / ASIC mining has pretty much taken over now. I still have my GPU miners running. They don't make much, pays the electric bill and maybe an extra $20 for my self each month. I'm just wondering if any one can point me in the right direction as to what pool would be best for someone still GPU mining. I hear good things about p2pool. I also read that LTC is more profitable to mine than BTC at the moment but I can't see how that is with the current exchange of 1 LTC = 0.006 BTC. So basically what would be the best thing I could / should do if I still wanted to GPU mine?\n",
+ "\n",
+ "### Reply 2:\n",
+ "Yeah I use to pool hop months ago but it kinda died off. I don't think its profitable any longer to do so with hopable pools switching their reward systems to a more hop proof algorithm. I tried mining LTC yesterday. I let it go for 24 hours. I got roughly 40 LTC @ 0.006 BTC = 0.24 BTC . With mining bitcoin I get 0.33 BTC per 24 hours. So I guess on my setup LTC isn't the most profitable.I may give p2pool a try. What would be a better pool to mine at. Currently (don't shoot me) I'm mining at deepbit. I know I've read that its the least profitable pool.\n",
+ "\n",
+ "### Reply 3:\n",
+ "GPU mining is still going strong for me at the moment. I make $3 profit per day approximately for each of my rigs.\n",
+ "\n",
+ "### Reply 4:\n",
+ "Is there any mining calculator for LTC?. I've got 1 5850, 11 5830 and 1 5770, do I get more by mining LTC?.\n",
+ "\n",
+ "### Reply 5:\n",
+ "Deepbit is not the least profitable pool. It's still the most reliable, so if you leave your miners unattended for extended periods of time that could easily make it more profitable than most others.Other than that give Ozcoin a try for a few day's. I'm GPU mining and use both of those pools as well as BTC Guild. But I'm not selling my coins for a profit, I'm putting them in my mattress .Sam\n",
+ "\n",
+ "### Reply 6:\n",
+ "p2pool seems to have worked out some of the kinks that turned me off it a few months ago. I'm running on it now and am very pleased with it. One note, I suggest running it locally, with port forwarding for 9333 (p2pool) and 8333 (for bitcoin) so that you have optimum info to work with. Theoretically that should reduce your stale rate. Lastly, keep your local version up to date. Using older versions is asking for trouble.The most popular public p2pool, p2pmining, got hacked not too long ago. The point of p2pool is to use your own resources and not rely on a public pool, that can have dishonest operators and/or be hacked.M\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: GPU miners, 5850, 5830, 5770\n",
+ "Hardware ownership: True, True, True, True\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"GPU miners\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"5850\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"5830\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"5770\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 16:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2016-08\n",
+ "Topic: S7 Issues, Batch 2\n",
+ "### Original post:\n",
+ "I moved 2 of my miners from room to room tonight. I had this problem once on Easter and some how resolved itself, but not tonight. My miner powers up and pulls its IP address but it doesn't hash. The green indicator light never starts blinking after the red one goes off. When I am on the main page this is what it looks like.Miner Type Antminer S7 Hostname antMiner Model GNU/Linux Hardware Version x.x.x.x Kernel Version Linux 3.8.13 #22 SMP Tue Dec 2 15:26:11 CST 2014 File System Version Fri Oct 23 17:00:53 CST 2015 Cgminer Version Uptime 0 Load Average 0.18, 0.04, 0.01 The hardware version is missing and so is the CG Miner version. I just ordered 2 new BB boards from bitmain but don't want the down time. These miners don't seem to have a SD card like the S4's did. But can I still flash a new image on a SD card and put it in? I tried the button reset several times, I tried flashing it to default and the newest firmware. I have tried everything have done in the past with my S4's, S5's and even before with these machines. Any suggestions would be welcome.Thanks\n",
+ "\n",
+ "### Reply 1:\n",
+ "You should check my post there : problem will affect everyone including you as long as 114.114.114.114 is down\n",
+ "\n",
+ "### Reply 2:\n",
+ "Thanks you so much. I took me a bit to figure it out but I got it after about 60 minutes. I have never used Putty like that. So I was proud of myself as well. I sent you a small tip to your BTC address in your tag. Its not much but thanks so much. Status: 0/unconfirmed, broadcast through 6 nodesDate: 4/22/2016 22:56To: lanfeusst \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer S7\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"BB boards\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"S4\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"S5\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"S7 board\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"S9\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 17:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2018-12\n",
+ "Topic: Canaan \"Flash Sale\"\n",
+ "### Original post:\n",
+ "We were discussing this in the kano.is Dicord group and someone has already confirmed with Lily that it's legit as the sale doesn't show on Canaan's main page on last check. like an awesome way to pick up really good miners for a nice price. However Canaan has a MOQ of like 50 for the 921 so maybe a group buy or some sort of collaboration? I wasn't sure if this forum or group buy was appropriate, but I thought I'd start here.\n",
+ "\n",
+ "### Reply 1:\n",
+ "so 200 x 50 = 10000 x 1.276 = 12,760 or 255.20 a unit plus shipping.and they do 20th at 1700 watts correct?do they come with the psu I think they do.if minefarmbuy can set up a group buy if they come with the psu I may want 1 or 2.\n",
+ "\n",
+ "### Reply 2:\n",
+ "@ $250.00 per running at .055 per KWH the unit alone takes 8 months to pay off. No thanks. The street's are running with much better deals on brand new Hash power already stateside. Many cases you can save shipping by picking up. \"After recent negativity in the industry around issues like the bitcoin cash hash war, he said: Nows the time to celebrate, were at a bottom.A little \" Premature Speculation\" if I may.\n",
+ "\n",
+ "### Reply 3:\n",
+ "I am not sure about the PSU or controller, I think it's just the miner. I have to be honest I am not to hip on Canaan specs, looks like it's 20TH @ 1800W +/- 20%.\n",
+ "\n",
+ "### Reply 4:\n",
+ "a good price if someone grabs a 50 packyou are right no psu 1800 watts for 20th\n",
+ "\n",
+ "### Reply 5:\n",
+ "the deal works for some not all people.\n",
+ "\n",
+ "### Reply 6:\n",
+ "Group buys, a novel idea. . .. Best way to bring asics into the states right now. Is this were I plug a certain website? I didn't see verbiage about a 50 unit MOQ anywhere but at this point we all know the sale is legit. Controllers are a good price right now with Canaan as well and their psu (just psu is only 1600w if I remember correctly).\n",
+ "\n",
+ "### Reply 7:\n",
+ "Um, Blockforge and probably other Canaan distributors still have their flash sale going as well. At BF the A921 is still $349 so why buy bulk and have to deal with import fees? And, Blokforge now has a 2kw PSU for the A9's as well. Just curious as to why the Group buy?\n",
+ "\n",
+ "### Reply 8:\n",
+ "This post was before the \"Flash Sale\" emails came out. That sale kind of invalidated the group buy IMHO.\n",
+ "\n",
+ "### Reply 9:\n",
+ "Essentially it's the same process regardless who \"distributes\". Buyers either deal with customs through mark up or tackle it themselves.I wouldn't think so. 20-50 people sign up for a sick deal on upgrades to their canaan farms is still possible. Duties can be tricky but not overly complicated to tackle.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: 921, PSU, Controller, A921, 2kw PSU\n",
+ "Hardware ownership: False, False, False, False, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Canaan 921\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PSU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Controller\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"A921\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"2kw PSU for the A9's\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 18:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2023-07\n",
+ "Topic: CoolTank Project: Let's Revolutionize Small-Scale Mining Together\n",
+ "### Original post:\n",
+ "Hey everyone,I wanted to share something I've been working on that I think could be really interesting to this community. It's called the CoolTank Project, and it's all about making crypto mining more efficient and accessible, especially for small-scale miners.The project started back in 2019 in Dubai, where we were trying to solve overheating problems in air-cooled mining farms. After a lot of research, we decided to use 2-phase immersion cooling technology. Read Our Story. developed the CoolTank 75KW and a smaller CoolTank 10KW, designed for home use and exhibitions. These aren't just efficient; they're designed to boost mining profits, extend the lifespan of your miners, and work well even in extreme conditions. Learn More we held a crowdfunding event to help fund the development of these products. I'm excited to say that the CoolTank 10KW was fully funded by a single contributor! This means we're now in the development and construction phase. love to share updates about the project here, if that's okay with the moderators. I think it could be a great way to keep everyone in the loop and get your feedback and ideas. After all, this project is about developin\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"CoolTank 75KW\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"CoolTank 10KW\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 19:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2016-08\n",
+ "Topic: Antminer S9 - How do i enable API please?\n",
+ "### Original post:\n",
+ "Hi there, I have antminer s9's and wondering if someone can help me configure them for API access - step by step please? I can remote SSH in to them not a problem, just have no idea what to do from there?ThanksR,.\n",
+ "\n",
+ "### Reply 1:\n",
+ "dont know dont touch , by default it's enabled\n",
+ "\n",
+ "### Reply 2:\n",
+ "At \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer S9\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 20:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2017-04\n",
+ "Topic: MOVED: msi z77a-g45 Anakart aldık üzerine 3\n",
+ "### Original post:\n",
+ "This topic has been moved to Trashcan. English altcoin mining discussion\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: msi z77a-g45, Anakart\n",
+ "Hardware ownership: True, True\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"msi z77a-g45 Anakart\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 21:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2015-06\n",
+ "Topic: Needing help with Antminer U3 /Raspberry Pi\n",
+ "### Original post:\n",
+ "HiI'm an absolute beginner with mining and Bitcoins.I had a Raspberry Pi lying around and thought I could use it to mine, so I bought an Antminer U3, and now I'm clueless on how to use the damn thing. I made all updates on my RaspPi but I dont know which version of cgminer to use, how to install it or how to configure my Antminer.Anyone know a good tutorial? Anyone can help me? I feel quite lost.\n",
+ "\n",
+ "### Reply 1:\n",
+ "I already tried to follow this tutorial but it doesn't work get the following: should I do?\n",
+ "\n",
+ "### Reply 2:\n",
+ "Use Minera. It is easy to setup and good for Raspberry Pi.Thread: \n",
+ "\n",
+ "### Reply 3:\n",
+ "Thanks for the quick answer.I'll look into it. Is it comptaible with the Antminer U3?\n",
+ "\n",
+ "### Reply 4:\n",
+ "AFAIK yes.\n",
+ "\n",
+ "### Reply 5:\n",
+ "Ok I installed the latest Minera version, accessed it from my computer. It's very nice btw.How do I make my U3 to start mining? Just plugging it ? No need to configure it, no need for drivers?I'm very new new to all this and I must admit I'm a bit confused.\n",
+ "\n",
+ "### Reply 6:\n",
+ "Use CGMiner in Minera. If it isn't there by default, download it and also download Zadig[1] and install both. After installing, you only have to choose pool, username and password. You will ne able to run it.[1] Read README[2] and use default url to access settings. It is good to change default password.[2] \n",
+ "\n",
+ "### Reply 7:\n",
+ "Isn't Zadig a windows software?I chose a pool, username and password, but it's like my U3 won't start. It is listed, but it won't work.What can I do?\n",
+ "\n",
+ "### Reply 8:\n",
+ "Sorry. My mistake. I messed up my mind.Which miner did you choose? CGMiner or BFGMiner?\n",
+ "\n",
+ "### Reply 9:\n",
+ "I chose cgminer.I'm a bit confused with the settings... What is Append JSON conf (-c \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Raspberry Pi\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer U3\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 22:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2023-01\n",
+ "Topic: Can anyone guess what could he Bitcoin Difficulty After 100 years Till now?\n",
+ "### Original post:\n",
+ "Hi guys I was wondering wether that how much price would be after 100 years and also what could be mining difficulty of a Bitcoin. Still I was seeing that Bitcoin mining difficulty is all time high of previous records that sits at 35.36 Trillion Hashes and that is too much insane.\n",
+ "\n",
+ "### Reply 1:\n",
+ "If Bitcoin mining difficulty is proportional to hashing power ..it will likely become very low considering that competition to mine for block rewards will no longer be necessary when 21million bitcoins have been mined\n",
+ "\n",
+ "### Reply 2:\n",
+ "Nobody can predict that far to the future. Too many variables to consider starting from mining equipment, electricity/energy cost, Bitcoin price, etc. For example, if we found a new way to generate electricity at a low cost, and there is a new device/quantum device that can do calculations at exponential speed to an existing rig, that number you consider insane might be nothing for them. So, people will just keep mining without any care.Or, the opposite happens. Electricity becomes more expensive, no more cheap rig is found, BTC tank heavy, nobody no longer uses it and so the difficulty is so low that you can mine with CPU again. I think this is unlikely but I won't be surprised if difficulty falls in the future if the profit becomes too small for small-medium mining farms. At the end of the day, the market will correct itself. If mining becomes too difficult difficulty will get lower, when profit increases more people will mine again, and so on. If you plan to mine BTC right now, consider buying them instead if you can't play the long game or has cheap electricity. It is probably not worth the trouble to set up a rig if profit is your goal. CMIIW.\n",
+ "\n",
+ "### Reply 3:\n",
+ "The fact that you are old enough to sign up for the form and ask such a question suggests that you need to be a supercentenarian to witness it, out of the nearly 8B population we have right now, studies show that there is between 300 and 350 supercentenarian, in other terms, 1 in 1000 centenarians (people who live up to 100 years) will get to 110, and to be centenarians the chances are 1 in 1000, so it's extremely unlikely for any of us to be there in a 100 years from now.Now that we got the human race life span stuff out of the way, the answer to your question is \"nobody knows\", everything will be determined by the VALUE extracted by miners, even the comment above that says could be wrong, when all the 21M BTC are mined, BTC could very well be trading at say 100M dollars each, if we were to assume that transaction fees are 5% of the total block reward, today it's 0.3125 which is about $5000 + $100,000 for the block reward = $105,000. in 2123 the total fees could be 0.1 BTC per block so at 100M that's 10,000,000$ per block, which even after accounting for inflation still beats the now \"105,000\", even with BTC trading at 10M still beats it.We also don't know how adopted BTC will be,\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"quantum device\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"rig\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"CPU\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 23:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2012-11\n",
+ "Topic: ISP shut down my Intenet!\n",
+ "### Original post:\n",
+ "Ok so I just got off the phone with my ISP. They have been detecting a \"virus\" and have shut down my connection because they FEEL like I am infecting other people. Of course, what they are seeing is the IRC P2P activity from my miners. I told them it is not a virus and they refuse to accept my explanation. I told them I would turn off the program if they would just give my internet back (temporary fix).My question to you guys is, what should I do now? Is there a way around my snooping ISP? I feel like I have two options right now, 1. Stop mining. 2. Change ISPs. Also I have been mining on and off for more than a year now. Hoping some people can help me out here. Has anyone else experienced anything like this?\n",
+ "\n",
+ "### Reply 1:\n",
+ "Where do you live and who is your ISP?\n",
+ "\n",
+ "### Reply 2:\n",
+ "This kind of thing has come up before, and in every case that I can recall, it turned out that the ISP wasn't really combating viri but trying to clamp down on Bittorrent or some other P2P tech that takes a lot of bandwidth. They can't really say it that way, though. Why would your miners be consuming a lot of bandwidth? You should only have one that is 'net facing while the rest just connect to each other and that one. If nothing else, you can port that one's connection over Tor, although that will slow things down. A ssh tunnel to an off-isp-network shell account would work well.\n",
+ "\n",
+ "### Reply 3:\n",
+ "I live in Ontario, Canada. My ISP is Rogers.Ok I have 2 computers with 5 miners (cards). I use Deepbit and GUI miner (used to use POCLBM but switched recently). For the last while I have been running only one computer which has 2 miners. My question to you is: does the mining software take a lot of bandwidth? I can't imagine it being more bandwidth than downloading a torrent. Also, will porting through the TOR network really hide the packets from my ISP? I never had a use for TOR so I am unfamiliar with it.\n",
+ "\n",
+ "### Reply 4:\n",
+ "Yeah it looks like I have to go rogue from now on. Oh well, maybe I can grab me some American Netflix while I'm at it. The Canadian one sux!\n",
+ "\n",
+ "### Reply 5:\n",
+ "Only while trying to download the blockchain, like any other client. Ongoing, not so much, no.If set up correctly, yes.\n",
+ "\n",
+ "### Reply 6:\n",
+ "If you are just mining on a pool this should not cause irc traffic. Mining also does not use a lot of bandwith. My 1 GH/s was like 2kb/s up/down, thats not much. Option 2 sounds like a solid plan imho.\n",
+ "\n",
+ "### Reply 7:\n",
+ "OK, I'm going to help you get to the bottom of the issue in a simple step by step fashion.Call Rogers' support.You'll be connected to level 1 support. These guys are clueless.So ask to talk to level 2 support. Politely, of course. You know they're losers but they can cockblock you, so be nice.At this point you'll be talking to engineers. Disregard them, for their methods to figure out what's wrong with your internet connection are naturally limited to the practice of science, and that methodology and epistemology -- clearly, as you have already been debriefed by Rogers -- is beneath the problem that is afflicting your internet connection.So tell them to connect you to level 3.When they patch you through, you'll finally have reached level 3 support. This is where the Internet Shamans work. They, and only they, can FEEL your internet connection, and they can FEEL the viruses that your computer is distributing over the internet. These privileged and magical individuals, in their infinite benevolence and with their infallible judgment that privileges oneness with the internet universe, will surely be able to restore harmony to your computing system.You're welcome :-)\n",
+ "\n",
+ "### Reply 8:\n",
+ "lol my ISP shut me down for 15-40Gbps international UDP flood (and this after half the city was without google for a day... and u get cut-off for mining this is crazy. Change the ISP ASAP and check your network for malicious software just in case\n",
+ "\n",
+ "### Reply 9:\n",
+ "Are you a Rogers level 3 technician? LoL...what do I say to these guys once I get there? \"I'm mining Bitcoins, please stop flagging my connection as an IRC bot, thanx\"??\n",
+ "\n",
+ "### Reply 10:\n",
+ "Rogers sucks man......... Where are you located.... Get cogeco...\n",
+ "\n",
+ "### Reply 11:\n",
+ "If you tell the Internet Shamans that you are mining Bitcoin, they will be able to feel your computing system in oneness with the universe and the common good, verify that to be the case, and they'll restore your service.But no, seriously this time, level 3 is usually understanding of this and will be able to determine that your activity is legit. One tip: don't act apologetic (your activities are legitimate), but don't act belligerent either -- simply explain that there has been a misunderstanding somewhere down the line, your Bitcoin mining was misidentified as IRC botnet activity, and you'd love to continue being their customer so you'll expect them to help you swiftly resolve the issue. Of course, if they still insist, ask them to share some tangible evidence so you can addre\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"miners\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"computers\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"cards\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 24:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2012-02\n",
+ "Topic: hash rate\n",
+ "### Original post:\n",
+ "to all who are more knowledgeable than me (nearly everyone)what is the significance- if any- of the hash rate falling to between 8500 and 8000 in the last few days?is there a lot less actual mining?has the difficulty increased -so it takes longer?has the profit margin gone so its not worth it?is it a reflection of the fall in BTC to fiat?none or all of the above? too complicated to even try an answer? . reg\n",
+ "\n",
+ "### Reply 1:\n",
+ "Might well be your second to last: drop from 5.7 to 4.7$/BTC within the last few days. Might be also bad luck.\n",
+ "\n",
+ "### Reply 2:\n",
+ "I did think of one more posative reason (in the bath).a lot more people are catching on to the idea (started by the fed) that making your own money is a good idea! also reading a list of things the authorities aka FBI are doing goes to support Ghandi's ideafirst they ignore youthen they ridicule youthen they fight you (now perhaps)then you win. reg\n",
+ "\n",
+ "### Reply 3:\n",
+ "The actual hashing rate over the last few days is just as unknown now as it always has been. Don't read much into things until it lasts a week or two.\n",
+ "\n",
+ "### Reply 4:\n",
+ "Kjj is right, don't read too much into changes over the last couple days. Difficulty is set over a two-week timeframe and there are several ways to estimate difficulty changes, none of which are extremely accurate at present. Someone could be moving a large mining operation to a new datacenter, running something on an alternate block chain, using an FPGA data center for what it's actually intended to be used for, or etc.\n",
+ "\n",
+ "### Reply 5:\n",
+ "This exact same thread shows up every time the exchange rate or the block rate changes, and lots of times when neither does.There is no such thing as The Hash Rate. It isn't measured. It isn't calculated. It isn't real.Your piddly little CPU could calculate two valid hashes in a row, but that doesn't mean that you got a temporary 5 petahash/sec upgrade.Whenever you see a graph claiming to show a network hash rate, you need to mentally cross out the graph's title, and write in your own:Note that this title is 100% past-tense, and that it makes no claims about what really did happen.\n",
+ "\n",
+ "### Reply 6:\n",
+ "yes, I also looked at past threads and the only thing about the rate that is certain is that it is uncertain what it really means. now the rate is up again only 12 hours later. I was just trying to figure what could cause such large (relatively) moves?. You are right the difficulty does not change that frequently and that much. Also I can't envision all the miners all over the world turning their rigs off on tuesday night!. Similarly the value of BTC is a consequence of hash rate not a cause and its conversion to fiat fluctuates at a lower % rate than currencies generally. Perhaps its as you say small changes in production having a disproportionate effect on the rate/time ratio. Maybe a mathematician should look again at the charts and determine if we are crying wolf too often? .reg\n",
+ "\n",
+ "### Reply 7:\n",
+ "There is no mechanism to measure the actual hash rate of Bitcoin. One can only see the rate at which Bitcoin blocks are found and added to the blockchain. Finding blocks is random. Finding many blocks is random. The number of blocks found in 12 hours is random. Nothing to see here, stop looking before you get in trouble.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: CPU, FPGA\n",
+ "Hardware ownership: False, False\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"CPU\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"FPGA data center\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 25:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2021-02\n",
+ "Topic: Weird T17 Fan\n",
+ "### Original post:\n",
+ "I have one fan that won't spin up over 1800 rpm.On 100% I get fan1 = 5860fan 2 = 5840fan 3 = 1800fan 4 = 5880I switched the fan for a new one, still 1800. I swapped the leads at the control board for fan 2 and fan 3 and now fan 2 is 1800. Seems like where the fan plugs into the control board maybe be wonky. Anyone else ever see this? I checked using a piece of paper and the one fan does seem to \"suck\" less.\n",
+ "\n",
+ "### Reply 1:\n",
+ "I had this problem before\" like a long time ago\", unfortunately, \"3 boots\" didn't fix it, I sadly had to install the custom firmware and disabled fan check, in my case, however, the fan was spinning just fine but the reading was bad.What you could try:1- A hard reset and different stock firmware.2- Custom firmware.3- A new control board.The third one will sure fix it, but not sure if it's worth it.\n",
+ "\n",
+ "### Reply 2:\n",
+ "I had this bug with some of my bitmain l3+I booted three times in a row.It went away. I have seen weird fan action on s9s the fans ramp up ramp down. wont go fast.yet test on other controllers they work.I think the three software boots in a row clears shit from the cache.\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: T17 Fan, control board, bitmain l3+, s9s\n",
+ "Hardware ownership: True, True, True, True\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"T17 Fan\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"control board\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"custom firmware\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"bitmain l3+\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"s9\",\n",
+ " \"hardware_is_owned\": true\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 26:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2019-02\n",
+ "Topic: Quiet Antminer S15?\n",
+ "### Original post:\n",
+ "Hey guys.New guy on the block here, first post.I'm thinking of getting back into mining. I did it for a few weeks back in 2009 when Bitcoin first started. Got me 10$ worth when it was about 10 coins per penny.So anyways, the scene has changed a great deal in 10 years.I 'm thinking of buying an Antminer S15. But I live in an apartment complex. And the machine would have to be in my bedroom. I'm thinking that 76 dB is just too loud (vacuum cleaner loud). So I came up with a few different ideas on how I could go about making it more quiet.I just want to bounce those ideas off of you guys just to make sure I'm not completely out of my mind.1) Water cooling. I do have a lot of equipment and experience in computer water cooling. But I would have to design and build my own custom water blocks for the S15. And that would be prohibitively expensive. 2) Mineral oil submersion. I have seen some people online who submerge their entire computer in mineral oil. I have no experience at all in that. And it would be expensive for me to go that way. My rads and pumps are just not built to handle something as thick as oil.3) Replace the fans for a squirrel inline fan. The two fans that come with the \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [\n",
+ " {\n",
+ " \"hardware_name\": \"Antminer S15\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"computer water cooling equipment\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"rads and pumps\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"squirrel inline fan\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"PSU fans\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Noctua 92mm fan\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"Gekko USB Hub\",\n",
+ " \"hardware_is_owned\": true\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"aftermarket water cooling kits for the S9\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"water block for the S9\",\n",
+ " \"hardware_is_owned\": false\n",
+ " },\n",
+ " {\n",
+ " \"hardware_name\": \"water block for the S15\",\n",
+ " \"hardware_is_owned\": false\n",
+ " }\n",
+ "] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "sample 27:\n",
+ " User:\n",
+ "In the given Bitcoin forum thread, pay close attention to the language used when mentioning hardware pieces. Look for explicit statements indicating ownership or hypothetical discussions.\n",
+ "\n",
+ "```thread\n",
+ "Date: 2014-09\n",
+ "Topic: MOVED: [Cl\n",
+ "### Original post:\n",
+ "This topic has been moved to Trashcan. posts by opening poster deleted, likely scam\n",
+ "\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "\n",
+ "Reply with the hardware names, all in the same line, separated by commas. Then, on a new line, list \"True\" or \"False\" for each piece of hardware to indicate ownership status. True if the mention suggests concrete ownership by any user, and False if the hardware is discussed in a hypothetical or speculative way.\n",
+ "\n",
+ "Assistant:\n",
+ "Sure! Here is the requested output, with the correct ownership status for each piece of hardware:\n",
+ "Hardware names: \n",
+ "Hardware ownership: \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "Label: [] \n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "total = 0\n",
+ "\n",
+ "import logging\n",
+ "logging.getLogger(\"transformers\").setLevel(logging.ERROR)\n",
+ "\n",
+ "for i in range(len(input_strings)):\n",
+ " s = input_strings[i]\n",
+ " # print(f\"{i}: {s}\")\n",
+ " inputs = tokenizer([s], return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ " outputs = model.generate(**inputs, max_new_tokens = 300, use_cache = True)\n",
+ " output = tokenizer.batch_decode(outputs)\n",
+ " \n",
+ " # print(\"Input:\\n\", s, \"\\n\\n\\n\\n\")\n",
+ " # print(\"Output:\", output[0].replace(s,\"\"), \"\\n\\n\\n\\n\")\n",
+ " print(f\"sample {i}:\")\n",
+ " print(output[0])\n",
+ " print(\"\\n\\n\\n\\nLabel:\", input_labels[i], \"\\n\\n\\n\\n\")\n",
+ " print(\"\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\")\n",
+ "\n",
+ "\n",
+ " total += 1\n",
+ " # if total > 10:\n",
+ " # break\n",
+ "\n",
+ "# print(f\"Correct: {correct} Total: {total} Accuracy: {correct/total}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CrSvZObor0lY"
+ },
+ "source": [
+ " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "e2pEuRb1r2Vg",
+ "outputId": "2188f68b-6b72-46e6-ea85-f8134df0aa46"
+ },
+ "outputs": [],
+ "source": [
+ "# # alpaca_prompt = Copied from above\n",
+ "# FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
+ "# inputs = tokenizer(\n",
+ "# [\n",
+ "# alpaca_prompt.format(\n",
+ "# \"Continue the fibonnaci sequence.\", # instruction\n",
+ "# \"1, 1, 2, 3, 5, 8\", # input\n",
+ "# \"\", # output - leave this blank for generation!\n",
+ "# )\n",
+ "# ], return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ "# from transformers import TextStreamer\n",
+ "# text_streamer = TextStreamer(tokenizer)\n",
+ "# _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uMuVrWbjAzhc"
+ },
+ "source": [
+ "\n",
+ "### Saving, loading finetuned models\n",
+ "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
+ "\n",
+ "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "id": "upcOlWe7A1vc"
+ },
+ "outputs": [],
+ "source": [
+ "# model.save_pretrained(\"lora_model\") # Local saving\n",
+ "# model.push_to_hub(\"your_name/lora_model\", token = \"...\") # Online saving"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AEEcJ4qfC7Lp"
+ },
+ "source": [
+ "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "MKX_XKs_BNZR",
+ "outputId": "68f54910-2634-4cce-f3a2-4cbb90e2e990"
+ },
+ "outputs": [],
+ "source": [
+ "# if False:\n",
+ "# from unsloth import FastLanguageModel\n",
+ "# model, tokenizer = FastLanguageModel.from_pretrained(\n",
+ "# model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ "# max_seq_length = max_seq_length,\n",
+ "# dtype = dtype,\n",
+ "# load_in_4bit = load_in_4bit,\n",
+ "# )\n",
+ "# FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
+ "\n",
+ "# # alpaca_prompt = You MUST copy from above!\n",
+ "\n",
+ "# inputs = tokenizer(\n",
+ "# [\n",
+ "# alpaca_prompt.format(\n",
+ "# \"What is a famous tall tower in Paris?\", # instruction\n",
+ "# \"\", # input\n",
+ "# \"\", # output - leave this blank for generation!\n",
+ "# )\n",
+ "# ], return_tensors = \"pt\").to(\"cuda\")\n",
+ "\n",
+ "# outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
+ "# tokenizer.batch_decode(outputs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QQMjaNrjsU5_"
+ },
+ "source": [
+ "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "id": "yFfaXG0WsQuE"
+ },
+ "outputs": [],
+ "source": [
+ "# if False:\n",
+ "# # I highly do NOT suggest - use Unsloth if possible\n",
+ "# from peft import AutoModelForPeftCausalLM\n",
+ "# from transformers import AutoTokenizer\n",
+ "# model = AutoModelForPeftCausalLM.from_pretrained(\n",
+ "# \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
+ "# load_in_4bit = load_in_4bit,\n",
+ "# )\n",
+ "# tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "f422JgM9sdVT"
+ },
+ "source": [
+ "### Saving to float16 for VLLM\n",
+ "\n",
+ "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "id": "iHjt_SMYsd3P"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Unsloth: Merging 4bit and LoRA weights to 16bit...\n",
+ "Unsloth: Will use up to 184.62 out of 233.99 RAM for saving.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 32/32 [00:00<00:00, 45.57it/s]\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Unsloth: Saving tokenizer... Done.\n",
+ "Unsloth: Saving model... This might take 5 minutes for Llama-7b...\n",
+ "Done.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Merge to 16bit\n",
+ "model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
+ "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n",
+ "\n",
+ "# Merge to 4bit\n",
+ "# model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit_forced\",)\n",
+ "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n",
+ "\n",
+ "# Just LoRA adapters\n",
+ "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
+ "if False: model.push_to_hub_merged(\"hf/model\", tokenizer, save_method = \"lora\", token = \"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TCv4vXHd61i7"
+ },
+ "source": [
+ "### GGUF / llama.cpp Conversion\n",
+ "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "FqfebeAdT073"
+ },
+ "outputs": [],
+ "source": [
+ "# Save to 8bit Q8_0\n",
+ "if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
+ "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, token = \"\")\n",
+ "\n",
+ "# Save to 16bit GGUF\n",
+ "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
+ "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"f16\", token = \"\")\n",
+ "\n",
+ "# Save to q4_k_m GGUF\n",
+ "if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
+ "if False: model.push_to_hub_gguf(\"hf/model\", tokenizer, quantization_method = \"q4_k_m\", token = \"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bDp0zNpwe6U_"
+ },
+ "source": [
+ "Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Zt9CHJqO6p30"
+ },
+ "source": [
+ "And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
+ "\n",
+ "Some other links:\n",
+ "1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
+ "2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
+ "3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
+ "4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
+ "5. Llama 7b [free Kaggle](https://www.kaggle.com/danielhanchen/unsloth-alpaca-t4-ddp)\n",
+ "6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "ModuleNotFoundError",
+ "evalue": "No module named 'matplotlib'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[38], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Assuming trainer_stats is a dictionary that contains loss values under the key 'loss'\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# This might need to be adjusted based on the actual structure of trainer_stats\u001b[39;00m\n\u001b[1;32m 5\u001b[0m losses \u001b[38;5;241m=\u001b[39m trainer_stats[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mloss\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mloss\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m trainer_stats \u001b[38;5;28;01melse\u001b[39;00m []\n",
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'matplotlib'"
+ ]
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "# Assuming trainer_stats is a dictionary that contains loss values under the key 'loss'\n",
+ "# This might need to be adjusted based on the actual structure of trainer_stats\n",
+ "losses = trainer_stats['loss'] if 'loss' in trainer_stats else []\n",
+ "\n",
+ "# Plotting the training loss\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "plt.plot(losses, label='Training Loss')\n",
+ "plt.xlabel('Steps')\n",
+ "plt.ylabel('Loss')\n",
+ "plt.title('Training Loss Over Time')\n",
+ "plt.legend()\n",
+ "plt.grid(True)\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.12"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "007a9dbfb5c84efd8ffd801bc04c0c20": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "02237d111eba4155ab5a48a1b33d82a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_38c7b4ead56b4540bf68fbe3a5496b9c",
+ "placeholder": "",
+ "style": "IPY_MODEL_9a0787c7c98b49b8a9141e5212faa249",
+ "value": "Downloading readme: 100%"
+ }
+ },
+ "0332ff4a20b34672bae74bebf98cc6e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "06eac325390f467d9825c489eb4cb442": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_52995fc47dcc4b6bbbba3a158370da1b",
+ "max": 1055,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5a88fa6168b34baca965387de6f9cbf4",
+ "value": 1055
+ }
+ },
+ "07087433b7984095a400cffe9c47b38d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "071858b3801e4844a4fc5a91205335c4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "088a000de2234c9f94a8b09e8a8abbb2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "08dcaabc623c4759a00fbee5430e3ba9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "09979ecafec9443ba1f7335ed64de778": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_187078f1978843f2b873cee2ee55ac91",
+ "placeholder": "",
+ "style": "IPY_MODEL_ca8af702ee764e7fa620476854a4f2cf",
+ "value": " 11.6k/11.6k [00:00<00:00, 157kB/s]"
+ }
+ },
+ "0b2301c8190944a3bf8935c4bf075d8c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "0bdbf9b92f7b4925a5ac28df93fd0fb0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f4e0e7a39ad9484f930e6673c35c2f5d",
+ "max": 51760,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_baad9118cade4cee9600a7fbf6426e0a",
+ "value": 51760
+ }
+ },
+ "0fc1037a17e541eba92a2d6f400ac6eb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1318a594d2df47779b84f22e4b0c0702": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1eec25504a6f41d199940c4232b0a114",
+ "placeholder": "",
+ "style": "IPY_MODEL_007a9dbfb5c84efd8ffd801bc04c0c20",
+ "value": " 51760/0 [00:01<00:00, 45735.67 examples/s]"
+ }
+ },
+ "13578e0496f644a4a454d96645dbf65f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "156432d2f1b74697bd74604e1bd5bf13": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "16fac1aad22444c4ad42ad0e6e1dfdc9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "187078f1978843f2b873cee2ee55ac91": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "18af2c44a24b4aaabfd192e3fc4bf655": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c45f02fbb40e4041ba7f95074f8e1e82",
+ "placeholder": "",
+ "style": "IPY_MODEL_0fc1037a17e541eba92a2d6f400ac6eb",
+ "value": " 1.80M/1.80M [00:00<00:00, 13.7MB/s]"
+ }
+ },
+ "1a6288e052884d5aa486415880acf134": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_156432d2f1b74697bd74604e1bd5bf13",
+ "placeholder": "",
+ "style": "IPY_MODEL_976fa37d0fa14282bc96b3c948b9da94",
+ "value": "Generating train split: "
+ }
+ },
+ "1a8da471604841ec9f6c8e0073471c00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f899ae16708544379d63960be07b7c32",
+ "IPY_MODEL_0bdbf9b92f7b4925a5ac28df93fd0fb0",
+ "IPY_MODEL_c1d8820a789f4899a839e6d28a4f333c"
+ ],
+ "layout": "IPY_MODEL_e711d7f85eee4fe195fad9fbddcfece2"
+ }
+ },
+ "1dffcda7345949cca7a01373e87bef91": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1eef883b99634b8abefd9c008eddbd1f",
+ "placeholder": "",
+ "style": "IPY_MODEL_a858db7a4c8a40a5bedc4ea817491c4c",
+ "value": " 4.13G/4.13G [00:36<00:00, 96.2MB/s]"
+ }
+ },
+ "1eec25504a6f41d199940c4232b0a114": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1eef883b99634b8abefd9c008eddbd1f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2223525ba0014e018e4833305c7eb26a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2237cb2d037e4945a7858c3550d12588": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "238205803c234c7fac3106429d86ceee": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "24768bbd587d4b1ba09b6c52dcd6237c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "20px"
+ }
+ },
+ "24aa300026334db1b545bf0fa906112e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "25eecdf89b8845a989ce2c8c4d9edbeb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d94a8d1f9d294abbb156e39da065910f",
+ "placeholder": "",
+ "style": "IPY_MODEL_ebb0f92e750447a39ff23a23ea73b445",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "26a77ab74a4a4e21b9afd9798a9f9a29": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3fe95fc9bc034a2db85ed19aedfd4250",
+ "max": 493443,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c1c0053b8e674ed6ac81316d4af82c48",
+ "value": 493443
+ }
+ },
+ "273be47263384901b6cf9f249ee3409d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "278d35f6e08d45e2a49c3509dd442f0c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "27cee145c0774440ba13e7033db70b14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9ca704fdbe8843239b76380e1735bc25",
+ "placeholder": "",
+ "style": "IPY_MODEL_07087433b7984095a400cffe9c47b38d",
+ "value": " 971/971 [00:00<00:00, 49.3kB/s]"
+ }
+ },
+ "289c8b4d1686443f8bed7441673a2c15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_24768bbd587d4b1ba09b6c52dcd6237c",
+ "max": 1,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_cdf054995f314976b7124de9564cbd9b",
+ "value": 1
+ }
+ },
+ "28ffcbb08f9c443c87df1b6d6d5f38bb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e76d203cc320464cadfc7b2649d8fdb7",
+ "max": 116,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0b2301c8190944a3bf8935c4bf075d8c",
+ "value": 116
+ }
+ },
+ "2ab87d2720a243e9ba6942a8a3953c15": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2c64fd94311247d89b2bbb37b0a72d52": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f85bc895a6ee4c5b8cfd26a1c827888f",
+ "placeholder": "",
+ "style": "IPY_MODEL_e5f70528f2834d2b861dc303346eff3a",
+ "value": "generation_config.json: 100%"
+ }
+ },
+ "2d6d42bf728c42fea2c225e7fb59d582": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2da70f09f484477ebbb8f81458556515": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2dfef2cd79c8463cb7eadad6a04aba91": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2ff515b72bbb43c889e2172c83933803": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2ffddabe91124b279f9a3ac41d1ead9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f97edc77840e49c49aed8e7ab80f45d1",
+ "IPY_MODEL_33761916bce24fde9bcff866736ddad7",
+ "IPY_MODEL_726aae420987454e87a08b9314844895"
+ ],
+ "layout": "IPY_MODEL_071858b3801e4844a4fc5a91205335c4"
+ }
+ },
+ "307f44c0a4da4d3ca0d44b54f9a5f6c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_53bfefa3e2c04cce9ab7d2b3fbca59d9",
+ "max": 44307561,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_aa58f2124335451890857ded72414ecf",
+ "value": 44307561
+ }
+ },
+ "320fff7da29b49d0980a5e19ecdd7e11": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "33761916bce24fde9bcff866736ddad7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_56b011c2482b427483508e259dc231fd",
+ "max": 51760,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_507c15541fe7489aa1fd1fd81c4aa222",
+ "value": 51760
+ }
+ },
+ "34e7e54d02cf4120acc14cfa9430674d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "355ecaa94d1a43b09e1d0b3f6e6ac8e3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "36082006c1d84d0e8a291e05714d4419": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "38c7b4ead56b4540bf68fbe3a5496b9c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3a4a21c80b1e4232825d13fbceb4e051": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f16087f7a4f94b18ae92a2615bd3719c",
+ "IPY_MODEL_06eac325390f467d9825c489eb4cb442",
+ "IPY_MODEL_9309cba5e6a64d62af82b8e8403336ba"
+ ],
+ "layout": "IPY_MODEL_c339d8fa8d7d4ad8874bc59f47ef193d"
+ }
+ },
+ "3be5c37493e742aebf0aa29b6723283b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3e463765bc424c67b88b5b522fd12f36": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9cf66b807829446f9985efbddee49228",
+ "IPY_MODEL_a836c026fe3a4a3d8c981b436b6af487",
+ "IPY_MODEL_fd99cd77c6e2476aaa4f32bbf2fae893"
+ ],
+ "layout": "IPY_MODEL_bb4a77f4f8fc4477b1987a0a69ee767e"
+ }
+ },
+ "3fe95fc9bc034a2db85ed19aedfd4250": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "40e8b59e229548c68ccb339234a5e525": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "457b5df3a4294c8a966e233d34c15a82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_08dcaabc623c4759a00fbee5430e3ba9",
+ "max": 1795303,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_45a3bcaffc3f4184b9ae869f7b0ccef4",
+ "value": 1795303
+ }
+ },
+ "45a3bcaffc3f4184b9ae869f7b0ccef4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "477d5041a08f4a3a9f7cfa1d98ab48ff": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_25eecdf89b8845a989ce2c8c4d9edbeb",
+ "IPY_MODEL_e02470ee64ad4f0fb2160b088cdcba7f",
+ "IPY_MODEL_b7c0858a80684aed9c19ce00dda85815"
+ ],
+ "layout": "IPY_MODEL_d0b82646d6f549d7ad59e9ff5f426e88"
+ }
+ },
+ "49e3298fbe054c7abb6a041ecd63737c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4bf05ee528bb4bb2979cde4d0a09544b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "507c15541fe7489aa1fd1fd81c4aa222": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "52995fc47dcc4b6bbbba3a158370da1b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "53bfefa3e2c04cce9ab7d2b3fbca59d9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "53ceff04ca854c38838dd982b75c5b05": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5503539430024c7586d4f8589c92fd74": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b331b446e257441387b331d822f570a0",
+ "placeholder": "",
+ "style": "IPY_MODEL_49e3298fbe054c7abb6a041ecd63737c",
+ "value": " 44.3M/44.3M [00:01<00:00, 37.8MB/s]"
+ }
+ },
+ "56b011c2482b427483508e259dc231fd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "56ed5fd876d94ebbaa8b4e905c348a0d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5a88fa6168b34baca965387de6f9cbf4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5b1aa79e9567426d893b92bab1f1cc40": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5d461f10bdc44c6b95d070fa9d7425d1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "612b4afa75734acba7ab7917a70ece9a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "613978ea26b94edeac575404c09edc52": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "61944d9473394be5b19cfd48fd504481": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6345dc6f40c6444aa05ed2aba7809a3c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "672d990adee44df6b58e27fe5804986f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "68d18369acc540a594aef61a2de07e63": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "68ff2006b3794e23b4ccbc2c83c52b9b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3be5c37493e742aebf0aa29b6723283b",
+ "max": 438,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_273be47263384901b6cf9f249ee3409d",
+ "value": 438
+ }
+ },
+ "699373e9a43d4433b1b3eacdc4eb338d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ead0df4cb60a4223b6a2d27814971093",
+ "placeholder": "",
+ "style": "IPY_MODEL_5b1aa79e9567426d893b92bab1f1cc40",
+ "value": " 116/116 [00:00<00:00, 4.47kB/s]"
+ }
+ },
+ "69c676782e0b496b820b55c45424177d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6a46284e269e4044b2e082098fb0988f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c5311843eaf640fd885b125d32fec217",
+ "IPY_MODEL_aed33eb228e84f77bf141b5141dab343",
+ "IPY_MODEL_27cee145c0774440ba13e7033db70b14"
+ ],
+ "layout": "IPY_MODEL_613978ea26b94edeac575404c09edc52"
+ }
+ },
+ "6a98441b0ff74361a79c96178834d8bc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6b104e7242cf4a608cfd0c4fc6f44db1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1a6288e052884d5aa486415880acf134",
+ "IPY_MODEL_289c8b4d1686443f8bed7441673a2c15",
+ "IPY_MODEL_1318a594d2df47779b84f22e4b0c0702"
+ ],
+ "layout": "IPY_MODEL_355ecaa94d1a43b09e1d0b3f6e6ac8e3"
+ }
+ },
+ "6d0d021108b54147a62e50fea1ba88ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6f90172dd5c240c885140d49add6208f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "7189bac8d0474bcea50cf8711259516c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_74a0e53405cd4d64bd597ad5461ed5dd",
+ "placeholder": "",
+ "style": "IPY_MODEL_278d35f6e08d45e2a49c3509dd442f0c",
+ "value": " 493k/493k [00:00<00:00, 7.71MB/s]"
+ }
+ },
+ "726aae420987454e87a08b9314844895": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4bf05ee528bb4bb2979cde4d0a09544b",
+ "placeholder": "",
+ "style": "IPY_MODEL_d62a5696b9704580b69e6fc3be9ffa8a",
+ "value": " 51760/51760 [00:00<00:00, 55175.06 examples/s]"
+ }
+ },
+ "73d4af57ddc64fb3afd0e2ab068cbcb4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "74a0e53405cd4d64bd597ad5461ed5dd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7bd2cc9aa724408fa9e70795744cad85": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fb0588bffd7a4238bac3f73052e09335",
+ "IPY_MODEL_68ff2006b3794e23b4ccbc2c83c52b9b",
+ "IPY_MODEL_910f2e6fffd24cd7b6e68c932c2a2524"
+ ],
+ "layout": "IPY_MODEL_6345dc6f40c6444aa05ed2aba7809a3c"
+ }
+ },
+ "80b9d976e30e40ecaf35a606bca5d647": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_e9b423d370314fdfa3c22e95c3a35d92",
+ "IPY_MODEL_307f44c0a4da4d3ca0d44b54f9a5f6c0",
+ "IPY_MODEL_5503539430024c7586d4f8589c92fd74"
+ ],
+ "layout": "IPY_MODEL_b17542f2cd0f45e79e755df622328358"
+ }
+ },
+ "838d7a4c2c3a4fe99a3eb0689fa7ef27": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "88e100a175e64a3dab6f772847deffd6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_68d18369acc540a594aef61a2de07e63",
+ "placeholder": "",
+ "style": "IPY_MODEL_69c676782e0b496b820b55c45424177d",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "8978f89cdfd64c41b504debc99fa000b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fad0db53f8d84346996a49bb8548a28f",
+ "IPY_MODEL_d719af3c7e434c4fbd88ce6442ff94f3",
+ "IPY_MODEL_1dffcda7345949cca7a01373e87bef91"
+ ],
+ "layout": "IPY_MODEL_2da70f09f484477ebbb8f81458556515"
+ }
+ },
+ "8cb7748eaa354d4ea0e3222685f1d9b4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8ebff9bab3d240c4a056c6c88a864773": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "910f2e6fffd24cd7b6e68c932c2a2524": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2ff515b72bbb43c889e2172c83933803",
+ "placeholder": "",
+ "style": "IPY_MODEL_a1cd830a712d490181d176267ce7b6f0",
+ "value": " 438/438 [00:00<00:00, 8.44kB/s]"
+ }
+ },
+ "927e1d33248d4653a785049b50b6d814": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_daf62811f5384d0f9aea58b40f23161a",
+ "max": 11610,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6f90172dd5c240c885140d49add6208f",
+ "value": 11610
+ }
+ },
+ "92eab7fadbed4bc2bc2935b4e3d800cf": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9309cba5e6a64d62af82b8e8403336ba": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_320fff7da29b49d0980a5e19ecdd7e11",
+ "placeholder": "",
+ "style": "IPY_MODEL_b0caf6ffd475467b9c26e9258902a6d7",
+ "value": " 1.05k/1.05k [00:00<00:00, 26.2kB/s]"
+ }
+ },
+ "976fa37d0fa14282bc96b3c948b9da94": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9a0787c7c98b49b8a9141e5212faa249": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "9ca704fdbe8843239b76380e1735bc25": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9cb14f593e754af19eaab25521b92907": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9cf66b807829446f9985efbddee49228": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9cb14f593e754af19eaab25521b92907",
+ "placeholder": "",
+ "style": "IPY_MODEL_2237cb2d037e4945a7858c3550d12588",
+ "value": "tokenizer.model: 100%"
+ }
+ },
+ "a1cd830a712d490181d176267ce7b6f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a7705bbedfcc45f8b227186a619fdb88": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ac5ff6c3f94840e0a856e748d614f985",
+ "placeholder": "",
+ "style": "IPY_MODEL_2ab87d2720a243e9ba6942a8a3953c15",
+ "value": " 438/438 [00:00<00:00, 25.2kB/s]"
+ }
+ },
+ "a836c026fe3a4a3d8c981b436b6af487": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c694dd6f0d3b4971b11b662b156fc773",
+ "max": 493443,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_13578e0496f644a4a454d96645dbf65f",
+ "value": 493443
+ }
+ },
+ "a858db7a4c8a40a5bedc4ea817491c4c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "aa58f2124335451890857ded72414ecf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "abdfbaceb7e24276958b71512b35ddc9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ac35368de2d746b4bed736459d187dbd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ac5ff6c3f94840e0a856e748d614f985": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ae42b52c748240f2bcbfea01b4573622": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c590336dde92421c8126df142cc1d05c",
+ "IPY_MODEL_c2326fa217954f389b973478abd98275",
+ "IPY_MODEL_b82fba3690c74fc08ec2e8b382245809"
+ ],
+ "layout": "IPY_MODEL_bc231a99984a4c0d9e6081b339d690e9"
+ }
+ },
+ "aed33eb228e84f77bf141b5141dab343": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cd12b6b9c1204fe18733c1862d0900e2",
+ "max": 971,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_612b4afa75734acba7ab7917a70ece9a",
+ "value": 971
+ }
+ },
+ "b0543ff9bb5d40fba101c988bfbc027d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b0caf6ffd475467b9c26e9258902a6d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b17542f2cd0f45e79e755df622328358": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b19d83c6f5ad4f04941e6a684678ac07": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_88e100a175e64a3dab6f772847deffd6",
+ "IPY_MODEL_457b5df3a4294c8a966e233d34c15a82",
+ "IPY_MODEL_18af2c44a24b4aaabfd192e3fc4bf655"
+ ],
+ "layout": "IPY_MODEL_61944d9473394be5b19cfd48fd504481"
+ }
+ },
+ "b331b446e257441387b331d822f570a0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b5eae4bf90bc4f10baa3cef668109188": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f15b829dd14a4c95a390721dfd15e44c",
+ "IPY_MODEL_c5ca8a1293aa46c397bc95bbc239f7e1",
+ "IPY_MODEL_a7705bbedfcc45f8b227186a619fdb88"
+ ],
+ "layout": "IPY_MODEL_238205803c234c7fac3106429d86ceee"
+ }
+ },
+ "b7c0858a80684aed9c19ce00dda85815": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_24aa300026334db1b545bf0fa906112e",
+ "placeholder": "",
+ "style": "IPY_MODEL_6d0d021108b54147a62e50fea1ba88ea",
+ "value": " 971/971 [00:00<00:00, 17.4kB/s]"
+ }
+ },
+ "b82fba3690c74fc08ec2e8b382245809": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2d6d42bf728c42fea2c225e7fb59d582",
+ "placeholder": "",
+ "style": "IPY_MODEL_b0543ff9bb5d40fba101c988bfbc027d",
+ "value": " 1.80M/1.80M [00:00<00:00, 22.7MB/s]"
+ }
+ },
+ "baad9118cade4cee9600a7fbf6426e0a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bb4a77f4f8fc4477b1987a0a69ee767e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bc231a99984a4c0d9e6081b339d690e9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bffa3542ab7f4b009da51ba63d56e478": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c1c0053b8e674ed6ac81316d4af82c48": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c1d8820a789f4899a839e6d28a4f333c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_16fac1aad22444c4ad42ad0e6e1dfdc9",
+ "placeholder": "",
+ "style": "IPY_MODEL_ac35368de2d746b4bed736459d187dbd",
+ "value": " 51760/51760 [00:44<00:00, 1814.65 examples/s]"
+ }
+ },
+ "c2326fa217954f389b973478abd98275": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e50f02bb85d44156887f90ad6aca8102",
+ "max": 1795303,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_53ceff04ca854c38838dd982b75c5b05",
+ "value": 1795303
+ }
+ },
+ "c24904c0a7294f3a93bb64aa38e70316": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_73d4af57ddc64fb3afd0e2ab068cbcb4",
+ "placeholder": "",
+ "style": "IPY_MODEL_672d990adee44df6b58e27fe5804986f",
+ "value": "tokenizer.model: 100%"
+ }
+ },
+ "c339d8fa8d7d4ad8874bc59f47ef193d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c45f02fbb40e4041ba7f95074f8e1e82": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c52fb02a25774735bc6cd1fd4085ffb2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2c64fd94311247d89b2bbb37b0a72d52",
+ "IPY_MODEL_28ffcbb08f9c443c87df1b6d6d5f38bb",
+ "IPY_MODEL_699373e9a43d4433b1b3eacdc4eb338d"
+ ],
+ "layout": "IPY_MODEL_ed41c69c299e42ccaea8cf4e31162b8e"
+ }
+ },
+ "c5311843eaf640fd885b125d32fec217": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d05f155563dd45c9a0cd76d7d0ee38f9",
+ "placeholder": "",
+ "style": "IPY_MODEL_cf6fe6d02df5448986728647e0442031",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "c590336dde92421c8126df142cc1d05c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f2f113c785114890b3eaed0219e2d0f3",
+ "placeholder": "",
+ "style": "IPY_MODEL_bffa3542ab7f4b009da51ba63d56e478",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "c5ca8a1293aa46c397bc95bbc239f7e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_36082006c1d84d0e8a291e05714d4419",
+ "max": 438,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_0332ff4a20b34672bae74bebf98cc6e2",
+ "value": 438
+ }
+ },
+ "c6941f8c60ef49a8a79ed265c46652c2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c694dd6f0d3b4971b11b662b156fc773": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c73d502c8be34400bd4fd31f1c14f354": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ca8af702ee764e7fa620476854a4f2cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "cd12b6b9c1204fe18733c1862d0900e2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cdf054995f314976b7124de9564cbd9b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ce81350896a44331aa6b6960b7370325": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cf6fe6d02df5448986728647e0442031": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d05f155563dd45c9a0cd76d7d0ee38f9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d0b82646d6f549d7ad59e9ff5f426e88": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d4d01dc3290b4174ab13454a28faf972": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d62a5696b9704580b69e6fc3be9ffa8a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d719af3c7e434c4fbd88ce6442ff94f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_838d7a4c2c3a4fe99a3eb0689fa7ef27",
+ "max": 4125687906,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e0ed107826af43db93b4fbd171bb9f36",
+ "value": 4125687906
+ }
+ },
+ "d94a8d1f9d294abbb156e39da065910f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "daf62811f5384d0f9aea58b40f23161a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "db33c13036a74c5eb2bcab082f9ce07d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dca1b3a080e74bf3b00a27dd1ed4b99c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "deb2982b19764ed5aec0b4d80e776279": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c24904c0a7294f3a93bb64aa38e70316",
+ "IPY_MODEL_26a77ab74a4a4e21b9afd9798a9f9a29",
+ "IPY_MODEL_7189bac8d0474bcea50cf8711259516c"
+ ],
+ "layout": "IPY_MODEL_ce81350896a44331aa6b6960b7370325"
+ }
+ },
+ "e02470ee64ad4f0fb2160b088cdcba7f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d4d01dc3290b4174ab13454a28faf972",
+ "max": 971,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c6941f8c60ef49a8a79ed265c46652c2",
+ "value": 971
+ }
+ },
+ "e0ea75df3b5c49ce89427e4d245a7646": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_02237d111eba4155ab5a48a1b33d82a4",
+ "IPY_MODEL_927e1d33248d4653a785049b50b6d814",
+ "IPY_MODEL_09979ecafec9443ba1f7335ed64de778"
+ ],
+ "layout": "IPY_MODEL_088a000de2234c9f94a8b09e8a8abbb2"
+ }
+ },
+ "e0ed107826af43db93b4fbd171bb9f36": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e50f02bb85d44156887f90ad6aca8102": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e5f70528f2834d2b861dc303346eff3a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e711d7f85eee4fe195fad9fbddcfece2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e76d203cc320464cadfc7b2649d8fdb7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e9b423d370314fdfa3c22e95c3a35d92": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fe6d1bab4fd042b5af89f6bb8a73cc39",
+ "placeholder": "",
+ "style": "IPY_MODEL_8cb7748eaa354d4ea0e3222685f1d9b4",
+ "value": "Downloading data: 100%"
+ }
+ },
+ "ead0df4cb60a4223b6a2d27814971093": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ebb0f92e750447a39ff23a23ea73b445": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ed41c69c299e42ccaea8cf4e31162b8e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f15b829dd14a4c95a390721dfd15e44c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f8d4f91fcd8440bbb41efbdcaed2128f",
+ "placeholder": "",
+ "style": "IPY_MODEL_2223525ba0014e018e4833305c7eb26a",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "f16087f7a4f94b18ae92a2615bd3719c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c73d502c8be34400bd4fd31f1c14f354",
+ "placeholder": "",
+ "style": "IPY_MODEL_34e7e54d02cf4120acc14cfa9430674d",
+ "value": "config.json: 100%"
+ }
+ },
+ "f2f113c785114890b3eaed0219e2d0f3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f4e0e7a39ad9484f930e6673c35c2f5d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f85bc895a6ee4c5b8cfd26a1c827888f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f899ae16708544379d63960be07b7c32": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_56ed5fd876d94ebbaa8b4e905c348a0d",
+ "placeholder": "",
+ "style": "IPY_MODEL_5d461f10bdc44c6b95d070fa9d7425d1",
+ "value": "Map (num_proc=2): 100%"
+ }
+ },
+ "f8d4f91fcd8440bbb41efbdcaed2128f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f97edc77840e49c49aed8e7ab80f45d1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6a98441b0ff74361a79c96178834d8bc",
+ "placeholder": "",
+ "style": "IPY_MODEL_40e8b59e229548c68ccb339234a5e525",
+ "value": "Map: 100%"
+ }
+ },
+ "fad0db53f8d84346996a49bb8548a28f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_db33c13036a74c5eb2bcab082f9ce07d",
+ "placeholder": "",
+ "style": "IPY_MODEL_dca1b3a080e74bf3b00a27dd1ed4b99c",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "fb0588bffd7a4238bac3f73052e09335": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_92eab7fadbed4bc2bc2935b4e3d800cf",
+ "placeholder": "",
+ "style": "IPY_MODEL_2dfef2cd79c8463cb7eadad6a04aba91",
+ "value": "special_tokens_map.json: 100%"
+ }
+ },
+ "fd99cd77c6e2476aaa4f32bbf2fae893": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_abdfbaceb7e24276958b71512b35ddc9",
+ "placeholder": "",
+ "style": "IPY_MODEL_8ebff9bab3d240c4a056c6c88a864773",
+ "value": " 493k/493k [00:00<00:00, 23.1MB/s]"
+ }
+ },
+ "fe6d1bab4fd042b5af89f6bb8a73cc39": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}