# Importing standard libraries | |
import os | |
import glob | |
import argparse | |
import pandas as pd | |
from tqdm import tqdm | |
from pathlib import Path | |
# Additional preprocessing functions are imported from another module. | |
from preprocessing_sub_functions import * | |
# This function returns a list of all CSV files in the given directory path. | |
def get_files(path): | |
return glob.glob(path + "/*.csv") | |
# This function aims to remove meta information from the text. | |
# The specifics of what meta information is removed depends on the function 'remove_meta_info'. | |
def raw_preprocess(text): | |
text = remove_meta_info(text) | |
return text | |
# A comprehensive text preprocessing function that applies several common preprocessing steps: | |
# - URLs are removed from the text. | |
# - The entire text is converted to lowercase to ensure uniformity. | |
# - Punctuation is stripped from the text. | |
# - Extra whitespaces (if any) are removed. | |
# - The text is tokenized (split into individual words or tokens). | |
# - Contractions (like "can't" or "won't") are expanded to their full forms. | |
# - Common words (stopwords) that don't add significant meaning are removed. | |
# Finally, the cleaned tokens are joined back into a string. | |
def text_preprocess(text): | |
text = remove_urls(text) | |
text = to_lowercase(text) | |
text = remove_sentence_punctuation(text) | |
text = remove_extra_whitespace(text) | |
tokens = tokenize(text) | |
tokens = expand_contractions(tokens) | |
tokens = remove_stopwords(tokens) | |
text = " ".join(tokens) | |
return text | |
# This function preprocesses a dataframe. | |
# Specific preprocessing steps include: | |
# - Removing rows marked as 'deleted'. | |
# - Removing posts marked as 'deleted'. | |
# - Updating the 'lastEdit' column. | |
# - Converting timestamps to a datetime format. | |
# - Renaming the 'timestamp' column to 'start_edit'. | |
def csv_preprocess(df): | |
df = remove_deleted(df) | |
df = remove_deleted_post(df) | |
df = update_lastEdit(df) | |
df = convert_to_datetime(df) | |
df.rename(columns={"timestamp": "start_edit"}, inplace=True) | |
return df | |
# This function processes individual CSV files: | |
# - Reads the CSV into a DataFrame. | |
# - Applies dataframe preprocessing. | |
# - Applies raw text preprocessing to the 'post' column. | |
# - Saves the raw preprocessed data into a 'raw-data' folder. | |
# - Applies comprehensive text preprocessing to the 'post' column. | |
# - Saves the fully preprocessed data into a 'preprocessed-data' folder. | |
def loop_through_csvs(filePath): | |
file = os.path.basename(filePath) | |
folder = os.path.basename(os.path.dirname(filePath)) | |
df = pd.read_csv(filePath) | |
df = csv_preprocess(df) | |
# Create a directory for raw data if it doesn't exist. | |
raw_folder = Path(f"raw-data/{folder}") | |
raw_folder.mkdir(parents=True, exist_ok=True) | |
# Apply raw preprocessing to the 'post' column of the dataframe. | |
df["post"] = df["post"].apply(raw_preprocess) | |
# Sort the dataframe by the 'last_edit' column. | |
df.sort_values(by=["last_edit"], inplace=True) | |
# Save the raw preprocessed dataframe to a CSV file. | |
df.to_csv(f"{raw_folder}/{file}", index=False) | |
# Create a directory for fully preprocessed data if it doesn't exist. | |
clean_folder = Path(f"preprocessed-data/{folder}") | |
clean_folder.mkdir(parents=True, exist_ok=True) | |
# Apply the comprehensive text preprocessing to the 'post' column and store the result in a new column. | |
df["preprocessed_post"] = df["post"].apply(text_preprocess) | |
# Sort the dataframe by the 'last_edit' column again. | |
df.sort_values(by=["last_edit"], inplace=True) | |
# Save the fully preprocessed dataframe to a CSV file. | |
df.to_csv(f"{clean_folder}/{file}", index=False) | |
return df | |
# A function to parse command-line arguments. | |
# The script expects a 'path' argument which indicates the directory where the raw CSV files are located. | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("path", help="path for the extraction") | |
return vars(parser.parse_args()) | |
# The main function of the script: | |
# - It retrieves all the CSV files from the specified directory. | |
# - Loops through each file, applying the preprocessing steps. | |
# - If an error occurs during processing, the error message is appended to an 'error_log.txt' file. | |
def main(path): | |
rawFiles = get_files(path) | |
for filePath in tqdm(rawFiles): | |
try: | |
df = loop_through_csvs(filePath) | |
except Exception as e: | |
# If an error occurs, log the error message to a file. | |
with open(f"{path}/error_log.txt", "a") as f: | |
f.write(f"{filePath} -- {e}\\n") | |
continue | |
if __name__ == "__main__": | |
main(**parse_args()) | |