End of training
Browse files
README.md
CHANGED
@@ -1,199 +1,95 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/w2v-bert-2.0
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: w2v-bert-tamil_new
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# w2v-bert-tamil_new
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0960
|
21 |
+
- Wer: 0.1781
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 4e-05
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 8
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 2000
|
49 |
+
- num_epochs: 5
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
56 |
+
| 0.3099 | 0.1547 | 2000 | 0.2685 | 0.4726 |
|
57 |
+
| 0.2319 | 0.3094 | 4000 | 0.2052 | 0.3246 |
|
58 |
+
| 0.21 | 0.4640 | 6000 | 0.1702 | 0.2968 |
|
59 |
+
| 0.1907 | 0.6187 | 8000 | 0.1591 | 0.2809 |
|
60 |
+
| 0.1789 | 0.7734 | 10000 | 0.1468 | 0.2703 |
|
61 |
+
| 0.1626 | 0.9281 | 12000 | 0.1482 | 0.2540 |
|
62 |
+
| 0.1469 | 1.0828 | 14000 | 0.1390 | 0.2536 |
|
63 |
+
| 0.144 | 1.2375 | 16000 | 0.1298 | 0.2433 |
|
64 |
+
| 0.1418 | 1.3921 | 18000 | 0.1287 | 0.2399 |
|
65 |
+
| 0.1349 | 1.5468 | 20000 | 0.1219 | 0.2343 |
|
66 |
+
| 0.1266 | 1.7015 | 22000 | 0.1229 | 0.2349 |
|
67 |
+
| 0.1257 | 1.8562 | 24000 | 0.1202 | 0.2241 |
|
68 |
+
| 0.1209 | 2.0109 | 26000 | 0.1193 | 0.2176 |
|
69 |
+
| 0.1113 | 2.1655 | 28000 | 0.1146 | 0.2150 |
|
70 |
+
| 0.1052 | 2.3202 | 30000 | 0.1165 | 0.2234 |
|
71 |
+
| 0.103 | 2.4749 | 32000 | 0.1130 | 0.2112 |
|
72 |
+
| 0.0988 | 2.6296 | 34000 | 0.1092 | 0.2029 |
|
73 |
+
| 0.098 | 2.7843 | 36000 | 0.1061 | 0.2022 |
|
74 |
+
| 0.1007 | 2.9390 | 38000 | 0.1054 | 0.2036 |
|
75 |
+
| 0.0823 | 3.0936 | 40000 | 0.1042 | 0.1997 |
|
76 |
+
| 0.0866 | 3.2483 | 42000 | 0.1020 | 0.1945 |
|
77 |
+
| 0.0874 | 3.4030 | 44000 | 0.0993 | 0.1972 |
|
78 |
+
| 0.0825 | 3.5577 | 46000 | 0.1012 | 0.1941 |
|
79 |
+
| 0.083 | 3.7124 | 48000 | 0.1017 | 0.1911 |
|
80 |
+
| 0.0724 | 3.8671 | 50000 | 0.0992 | 0.1904 |
|
81 |
+
| 0.0761 | 4.0217 | 52000 | 0.0983 | 0.1856 |
|
82 |
+
| 0.0641 | 4.1764 | 54000 | 0.1011 | 0.1857 |
|
83 |
+
| 0.0611 | 4.3311 | 56000 | 0.0980 | 0.1821 |
|
84 |
+
| 0.0646 | 4.4858 | 58000 | 0.0982 | 0.1816 |
|
85 |
+
| 0.062 | 4.6405 | 60000 | 0.0962 | 0.1786 |
|
86 |
+
| 0.0616 | 4.7951 | 62000 | 0.0951 | 0.1787 |
|
87 |
+
| 0.0607 | 4.9498 | 64000 | 0.0960 | 0.1781 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.41.1
|
93 |
+
- Pytorch 2.1.2+cu121
|
94 |
+
- Datasets 2.19.1
|
95 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2423035960
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:639b67a330524ae331cd583432a231ed0aa20f779ca7e71e3a287f3fa4b10e6b
|
3 |
size 2423035960
|
runs/Dec04_23-23-40_GPU/events.out.tfevents.1733336170.GPU.1512561.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76bb7af3803d200a4277cccf3cc8f62be340125e6b3ff1cc897dd5911bf890b6
|
3 |
+
size 44351
|