--- license: mit license_link: https://huggingface.co/nvidia/BigVGAN/blob/main/LICENSE tags: - neural-vocoder - audio-generation library_name: PyTorch pipeline_tag: audio-to-audio --- ## BigVGAN with different mel spectrogram input These BigVGAN checkpoints are from continued training of https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x, with the input mel spectrogram generated from this code from [[vocos]](https://github.com/gemelo-ai/vocos/blob/c859e3b7b534f3776a357983029d34170ddd6fc3/vocos/feature_extractors.py#L28C1-L49C24): ```py class MelSpectrogramFeatures(FeatureExtractor): def __init__(self, sample_rate=24000, n_fft=1024, hop_length=256, n_mels=100, padding="center"): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.mel_spec = torchaudio.transforms.MelSpectrogram( sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, center=padding == "center", power=1, ) def forward(self, audio, **kwargs): if self.padding == "same": pad = self.mel_spec.win_length - self.mel_spec.hop_length audio = torch.nn.functional.pad(audio, (pad // 2, pad // 2), mode="reflect") mel = self.mel_spec(audio) features = safe_log(mel) return features ``` Training was done with segment_size=65536 (unchanged) and batch_size=24 (vs 32 from the Nvidia team). Final eval PESQ is 4.340 (vs 4.362 from the Nvidia checkpoint, on their own mel spectrogram code).