|
import io |
|
import logging |
|
import time |
|
from pathlib import Path |
|
|
|
import librosa |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import soundfile |
|
|
|
from inference import infer_tool |
|
from inference import slicer |
|
from inference.infer_tool import Svc |
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json") |
|
|
|
|
|
|
|
def main(): |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description='sovits4 inference') |
|
|
|
|
|
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", |
|
help='Path to the model.') |
|
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", |
|
help='Path to the configuration file.') |
|
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], |
|
help='Target speaker name for conversion.') |
|
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], |
|
help='A list of wav file names located in the raw folder.') |
|
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], |
|
help='Pitch adjustment, supports positive and negative (semitone) values.') |
|
|
|
|
|
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False, |
|
help='Automatic pitch prediction for voice conversion. Do not enable this when converting songs as it can cause serious pitch issues.') |
|
parser.add_argument('-cl', '--clip', type=float, default=0, |
|
help='Voice forced slicing. Set to 0 to turn off(default), duration in seconds.') |
|
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, |
|
help='The cross fade length of two audio slices in seconds. If there is a discontinuous voice after forced slicing, you can adjust this value. Otherwise, it is recommended to use. Default 0.') |
|
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", |
|
help='Path to the clustering model. Fill in any value if clustering is not trained.') |
|
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, |
|
help='Proportion of the clustering solution, range 0-1. Fill in 0 if the clustering model is not trained.') |
|
parser.add_argument('-fmp', '--f0_mean_pooling', action='store_true', default=False, |
|
help='Apply mean filter (pooling) to f0, which may improve some hoarse sounds. Enabling this option will reduce inference speed.') |
|
parser.add_argument('-eh', '--enhance', action='store_true', default=False, |
|
help='Whether to use NSF_HIFIGAN enhancer. This option has certain effect on sound quality enhancement for some models with few training sets, but has negative effect on well-trained models, so it is turned off by default.') |
|
|
|
|
|
parser.add_argument('-sd', '--slice_db', type=int, default=-40, |
|
help='Loudness for automatic slicing. For noisy audio it can be set to -30') |
|
parser.add_argument('-d', '--device', type=str, default=None, |
|
help='Device used for inference. None means auto selecting.') |
|
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, |
|
help='Affect pronunciation and sound quality.') |
|
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, |
|
help='Due to unknown reasons, there may be abnormal noise at the beginning and end. It will disappear after padding a short silent segment.') |
|
parser.add_argument('-wf', '--wav_format', type=str, default='flac', |
|
help='output format') |
|
parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, |
|
help='Proportion of cross length retention, range (0-1]. After forced slicing, the beginning and end of each segment need to be discarded.') |
|
parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0, |
|
help='Adapt the enhancer to a higher range of sound. The unit is the semitones, default 0.') |
|
parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05, |
|
help='F0 Filtering threshold: This parameter is valid only when f0_mean_pooling is enabled. Values range from 0 to 1. Reducing this value reduces the probability of being out of tune, but increases matte.') |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
clean_names = args.clean_names |
|
trans = args.trans |
|
spk_list = args.spk_list |
|
slice_db = args.slice_db |
|
wav_format = args.wav_format |
|
auto_predict_f0 = args.auto_predict_f0 |
|
cluster_infer_ratio = args.cluster_infer_ratio |
|
noice_scale = args.noice_scale |
|
pad_seconds = args.pad_seconds |
|
clip = args.clip |
|
lg = args.linear_gradient |
|
lgr = args.linear_gradient_retain |
|
F0_mean_pooling = args.f0_mean_pooling |
|
enhance = args.enhance |
|
enhancer_adaptive_key = args.enhancer_adaptive_key |
|
cr_threshold = args.f0_filter_threshold |
|
|
|
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path,enhance) |
|
infer_tool.mkdir(["raw", "results"]) |
|
|
|
infer_tool.fill_a_to_b(trans, clean_names) |
|
for clean_name, tran in zip(clean_names, trans): |
|
raw_audio_path = f"raw/{clean_name}" |
|
if "." not in raw_audio_path: |
|
raw_audio_path += ".wav" |
|
infer_tool.format_wav(raw_audio_path) |
|
wav_path = Path(raw_audio_path).with_suffix('.wav') |
|
chunks = slicer.cut(wav_path, db_thresh=slice_db) |
|
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) |
|
per_size = int(clip*audio_sr) |
|
lg_size = int(lg*audio_sr) |
|
lg_size_r = int(lg_size*lgr) |
|
lg_size_c_l = (lg_size-lg_size_r)//2 |
|
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l |
|
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0 |
|
|
|
for spk in spk_list: |
|
audio = [] |
|
for (slice_tag, data) in audio_data: |
|
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') |
|
|
|
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample)) |
|
if slice_tag: |
|
print('jump empty segment') |
|
_audio = np.zeros(length) |
|
audio.extend(list(infer_tool.pad_array(_audio, length))) |
|
continue |
|
if per_size != 0: |
|
datas = infer_tool.split_list_by_n(data, per_size,lg_size) |
|
else: |
|
datas = [data] |
|
for k,dat in enumerate(datas): |
|
per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length |
|
if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======') |
|
|
|
pad_len = int(audio_sr * pad_seconds) |
|
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])]) |
|
raw_path = io.BytesIO() |
|
soundfile.write(raw_path, dat, audio_sr, format="wav") |
|
raw_path.seek(0) |
|
out_audio, out_sr = svc_model.infer(spk, tran, raw_path, |
|
cluster_infer_ratio=cluster_infer_ratio, |
|
auto_predict_f0=auto_predict_f0, |
|
noice_scale=noice_scale, |
|
F0_mean_pooling = F0_mean_pooling, |
|
enhancer_adaptive_key = enhancer_adaptive_key, |
|
cr_threshold = cr_threshold |
|
) |
|
_audio = out_audio.cpu().numpy() |
|
pad_len = int(svc_model.target_sample * pad_seconds) |
|
_audio = _audio[pad_len:-pad_len] |
|
_audio = infer_tool.pad_array(_audio, per_length) |
|
if lg_size!=0 and k!=0: |
|
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr != 1 else audio[-lg_size:] |
|
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr != 1 else _audio[0:lg_size] |
|
lg_pre = lg1*(1-lg)+lg2*lg |
|
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr != 1 else audio[0:-lg_size] |
|
audio.extend(lg_pre) |
|
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr != 1 else _audio[lg_size:] |
|
audio.extend(list(_audio)) |
|
key = "auto" if auto_predict_f0 else f"{tran}key" |
|
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}" |
|
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}' |
|
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format) |
|
svc_model.clear_empty() |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|