cassettesgoboom commited on
Commit
b55d0a3
·
verified ·
1 Parent(s): a14302a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md CHANGED
@@ -14,6 +14,102 @@ tags:
14
  This model was converted to GGUF format from [`qihoo360/TinyR1-32B-Preview`](https://huggingface.co/qihoo360/TinyR1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
15
  Refer to the [original model card](https://huggingface.co/qihoo360/TinyR1-32B-Preview) for more details on the model.
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ## Use with llama.cpp
18
  Install llama.cpp through brew (works on Mac and Linux)
19
 
 
14
  This model was converted to GGUF format from [`qihoo360/TinyR1-32B-Preview`](https://huggingface.co/qihoo360/TinyR1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
15
  Refer to the [original model card](https://huggingface.co/qihoo360/TinyR1-32B-Preview) for more details on the model.
16
 
17
+ Original Model card:
18
+ ---
19
+ license: apache-2.0
20
+ library_name: transformers
21
+ base_model:
22
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
23
+ ---
24
+
25
+ **Model Name**: Tiny-R1-32B-Preview
26
+ **Title**: SuperDistillation Achieves Near-R1 Performance with Just 5% of Parameters.
27
+
28
+ # Introduction
29
+ We introduce our first-generation reasoning model, Tiny-R1-32B-Preview, which outperforms the 70B model Deepseek-R1-Distill-Llama-70B and nearly matches the full R1 model in math.
30
+
31
+
32
+ ## Evaluation
33
+ | Model | Math (AIME 2024) | Coding (LiveCodeBench) | Science (GPQA-Diamond) |
34
+ | ------------------------------- | ------------------- | ----------------------- | ---------------------- |
35
+ | Deepseek-R1-Distill-Qwen-32B | 72.6 | 57.2 | 62.1 |
36
+ | Deepseek-R1-Distill-Llama-70B | 70.0 | 57.5 | 65.2 |
37
+ | Deepseek-R1 | 79.8 | 65.9 | 71.5 |
38
+ | Tiny-R1-32B-Preview (Ours) | 78.1 | 61.6 | 65.0
39
+
40
+ All scores are reported as pass@1.
41
+ For AIME 2024, we sample 16 responses, and for GPQA-Diamond, we sample 4 responses, both using average overall accuracy for stable evaluation.
42
+
43
+ ## Approach
44
+ | Model | Math (AIME 2024) | Coding (LiveCodeBench) | Science (GPQA-Diamond) |
45
+ | ------------------------------- | ------------------- | ----------------------- | ---------------------- |
46
+ | Math-Model (Ours) | 73.1 | - | - |
47
+ | Code-Model (Ours) | - | 63.4 | - |
48
+ | Science-Model (Ours) | - | - | 64.5 |
49
+ | Tiny-R1-32B-Preview (Ours) | 78.1 | 61.6 | 65.0
50
+
51
+
52
+ We applied supervised fine-tuning (SFT) to Deepseek-R1-Distill-Qwen-32B across three target domains—Mathematics, Code, and Science — using the [360-LLaMA-Factory](https://github.com/Qihoo360/360-LLaMA-Factory/) training framework to produce three domain-specific models. We used questions from open-source data as seeds, and used DeepSeek-R1 to generate responses for mathematics, coding, and science tasks separately, creating specialized models for each domain. Building on this, we leveraged the Mergekit tool from the Arcee team to combine multiple models, creating Tiny-R1-32B-Preview, which demonstrates strong overall performance.
53
+
54
+
55
+
56
+ ## Data
57
+
58
+ #### 1. Math
59
+ 58.3k CoT trajectories from [open-r1/OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), default subset
60
+
61
+ #### 2. Coding
62
+ 19k CoT trajectories [open-thoughts/OpenThoughts-114k](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k), coding subset
63
+
64
+ #### 3. Science
65
+ We used R1 to generate 8 CoT trajectories on 7.6k seed examples, and got 60.8k CoT trajectories in total; the seed examples are as follows:
66
+ - 2.7k seed examples from [simplescaling/data_ablation_full59K](https://huggingface.co/datasets/simplescaling/data_ablation_full59K), science and health science subset
67
+ - 4.9k seed examples from [open-thoughts/OpenThoughts-114k](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k), science subset
68
+
69
+
70
+
71
+ ## Open Source Plan
72
+ We will publish a technical report as soon as possible and open-source our training and evaluation code, selected training data, and evaluation logs. Having benefited immensely from the open-source community, we are committed to giving back in every way we can.
73
+
74
+
75
+
76
+ ## Contributors
77
+
78
+ *360 Team:*
79
+ Lin Sun,
80
+ Guangxiang Zhao,
81
+ Xiaoqi Jian,
82
+ Weihong Lin,
83
+ Yongfu Zhu,
84
+ Change Jia,
85
+ Linglin Zhang,
86
+ Jinzhu Wu,
87
+ Sai-er Hu,
88
+ Xiangzheng Zhang
89
+
90
+ *PKU Team:*
91
+ Yuhan Wu,
92
+ Zihan Jiang,
93
+ Wenrui Liu,
94
+ Junting Zhou,
95
+ Bin Cui,
96
+ Tong Yang
97
+
98
+
99
+ ## Citation
100
+ ```
101
+ @misc{tinyr1proj,
102
+ title={SuperDistillation Achieves Near-R1 Performance with Just 5% of Parameters.},
103
+ author={TinyR1 Team},
104
+ year={2025},
105
+ eprint={},
106
+ archivePrefix={},
107
+ primaryClass={},
108
+ url={https://huggingface.co/qihoo360/TinyR1-32B-Preview},
109
+ }
110
+ ```
111
+
112
+
113
  ## Use with llama.cpp
114
  Install llama.cpp through brew (works on Mac and Linux)
115