cassador commited on
Commit
230cc60
·
verified ·
1 Parent(s): fe0e1dd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -672
README.md CHANGED
@@ -1,673 +1,10 @@
1
- ---
2
- language: []
3
- library_name: sentence-transformers
4
- tags:
5
- - sentence-transformers
6
- - sentence-similarity
7
- - feature-extraction
8
- - generated_from_trainer
9
- - dataset_size:10330
10
- - loss:MultipleNegativesRankingLoss
11
- base_model: indobenchmark/indobert-base-p2
12
- datasets: []
13
- metrics:
14
- - pearson_cosine
15
- - spearman_cosine
16
- - pearson_manhattan
17
- - spearman_manhattan
18
- - pearson_euclidean
19
- - spearman_euclidean
20
- - pearson_dot
21
- - spearman_dot
22
- - pearson_max
23
- - spearman_max
24
- widget:
25
- - source_sentence: Gedung itu sendiri telah terbakar sekitar pukul 20.00 WITA, dan
26
- api menyala sampai pukul 09.00 keesokan harinya.
27
- sentences:
28
- - Antartika merupakan wilayah yang subur.
29
- - Kedokteran Islam tidak mempengaruhi kedokteran di Italia.
30
- - Gedung itu habis terbakar.
31
- - source_sentence: Singapura terpilih sebagai tuan rumah SEA Games XXVIII 2015 pada
32
- penyelenggaraan SEA Games XXVI di Palembang dan Jakarta, Indonesia. Singapura
33
- seharusnya menjadi tuan rumah SEA Games XXIV 2007, tetapi negara-kota tersebut
34
- menolak untuk membangun berbagai infrastruktur olahraga untuk menyambut event
35
- ini. Mereka sekali lagi terpilih sebagai tuan tumah SEA Games XXVII 2013, tetapi
36
- juga menolak. Terakhir kali Singapura menjadi tuan rumah adalah 22 tahun yang
37
- lalu.
38
- sentences:
39
- - Dalam waktu singkat jalan raya antara Pekanbaru sampai batas Sumatera Barat siap
40
- dikerjakan.
41
- - Denpasar pernah menjadi tuan rumah SEA Games.
42
- - Di babak kedua, kedua tim mencetak satu gol.
43
- - source_sentence: Di akhir acara, keenam anggota JKT48 diminta menyanyikan "Heavy
44
- Rotation" versi bahasa Indonesia secara acapella.
45
- sentences:
46
- - Grup musik ini memiliki seorang gitaris.
47
- - Pria tidak boleh menjadi anggota JKT48.
48
- - Fisika dipahami sebagai aturan yang mengatur sifat materi, bentuk dan perubahan
49
- mereka.
50
- - source_sentence: Komunisme atau Marxisme adalah ideologi dasar yang umumnya digunakan
51
- oleh partai komunis di seluruh dunia.
52
- sentences:
53
- - Bomba Tzur merupakan salah satu pemainnya.
54
- - ITV menayangkan "Who wants to be a millionare" versi asli.
55
- - Seluruh partai komunis menganut paham komunisme.
56
- - source_sentence: Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.
57
- sentences:
58
- - RNA tidak dapat mengatalis reaksi kimia.
59
- - Gereja Baptis biasanya cenderung membentuk kelompok sendiri.
60
- - Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.
61
  pipeline_tag: sentence-similarity
62
- model-index:
63
- - name: SentenceTransformer based on indobenchmark/indobert-base-p2
64
- results:
65
- - task:
66
- type: semantic-similarity
67
- name: Semantic Similarity
68
- dataset:
69
- name: sts dev
70
- type: sts-dev
71
- metrics:
72
- - type: pearson_cosine
73
- value: -0.0979039836743928
74
- name: Pearson Cosine
75
- - type: spearman_cosine
76
- value: -0.10370853946172742
77
- name: Spearman Cosine
78
- - type: pearson_manhattan
79
- value: -0.0986716229567464
80
- name: Pearson Manhattan
81
- - type: spearman_manhattan
82
- value: -0.10051590980192249
83
- name: Spearman Manhattan
84
- - type: pearson_euclidean
85
- value: -0.09806801008727767
86
- name: Pearson Euclidean
87
- - type: spearman_euclidean
88
- value: -0.09978077307233649
89
- name: Spearman Euclidean
90
- - type: pearson_dot
91
- value: -0.08215757856369725
92
- name: Pearson Dot
93
- - type: spearman_dot
94
- value: -0.08205505573726227
95
- name: Spearman Dot
96
- - type: pearson_max
97
- value: -0.08215757856369725
98
- name: Pearson Max
99
- - type: spearman_max
100
- value: -0.08205505573726227
101
- name: Spearman Max
102
- - type: pearson_cosine
103
- value: -0.02784985879772803
104
- name: Pearson Cosine
105
- - type: spearman_cosine
106
- value: -0.03497736614462515
107
- name: Spearman Cosine
108
- - type: pearson_manhattan
109
- value: -0.03551617173397621
110
- name: Pearson Manhattan
111
- - type: spearman_manhattan
112
- value: -0.03865758617690966
113
- name: Spearman Manhattan
114
- - type: pearson_euclidean
115
- value: -0.0355939001168591
116
- name: Pearson Euclidean
117
- - type: spearman_euclidean
118
- value: -0.03886934284409788
119
- name: Spearman Euclidean
120
- - type: pearson_dot
121
- value: -0.009209251203106355
122
- name: Pearson Dot
123
- - type: spearman_dot
124
- value: -0.006641745341724743
125
- name: Spearman Dot
126
- - type: pearson_max
127
- value: -0.009209251203106355
128
- name: Pearson Max
129
- - type: spearman_max
130
- value: -0.006641745341724743
131
- name: Spearman Max
132
- ---
133
-
134
- # SentenceTransformer based on indobenchmark/indobert-base-p2
135
-
136
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
137
-
138
- ## Model Details
139
-
140
- ### Model Description
141
- - **Model Type:** Sentence Transformer
142
- - **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
143
- - **Maximum Sequence Length:** 200 tokens
144
- - **Output Dimensionality:** 768 tokens
145
- - **Similarity Function:** Cosine Similarity
146
- <!-- - **Training Dataset:** Unknown -->
147
- <!-- - **Language:** Unknown -->
148
- <!-- - **License:** Unknown -->
149
-
150
- ### Model Sources
151
-
152
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
153
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
154
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
155
-
156
- ### Full Model Architecture
157
-
158
- ```
159
- SentenceTransformer(
160
- (0): Transformer({'max_seq_length': 200, 'do_lower_case': False}) with Transformer model: BertModel
161
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
162
- )
163
- ```
164
-
165
- ## Usage
166
-
167
- ### Direct Usage (Sentence Transformers)
168
-
169
- First install the Sentence Transformers library:
170
-
171
- ```bash
172
- pip install -U sentence-transformers
173
- ```
174
-
175
- Then you can load this model and run inference.
176
- ```python
177
- from sentence_transformers import SentenceTransformer
178
-
179
- # Download from the 🤗 Hub
180
- model = SentenceTransformer("sentence_transformers_model_id")
181
- # Run inference
182
- sentences = [
183
- 'Penduduk kabupaten Raja Ampat mayoritas memeluk agama Kristen.',
184
- 'Masyarakat kabupaten Raja Ampat mayoritas memeluk agama Islam.',
185
- 'Gereja Baptis biasanya cenderung membentuk kelompok sendiri.',
186
- ]
187
- embeddings = model.encode(sentences)
188
- print(embeddings.shape)
189
- # [3, 768]
190
-
191
- # Get the similarity scores for the embeddings
192
- similarities = model.similarity(embeddings, embeddings)
193
- print(similarities.shape)
194
- # [3, 3]
195
- ```
196
-
197
- <!--
198
- ### Direct Usage (Transformers)
199
-
200
- <details><summary>Click to see the direct usage in Transformers</summary>
201
-
202
- </details>
203
- -->
204
-
205
- <!--
206
- ### Downstream Usage (Sentence Transformers)
207
-
208
- You can finetune this model on your own dataset.
209
-
210
- <details><summary>Click to expand</summary>
211
-
212
- </details>
213
- -->
214
-
215
- <!--
216
- ### Out-of-Scope Use
217
-
218
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
219
- -->
220
-
221
- ## Evaluation
222
-
223
- ### Metrics
224
-
225
- #### Semantic Similarity
226
- * Dataset: `sts-dev`
227
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
228
-
229
- | Metric | Value |
230
- |:-------------------|:------------|
231
- | pearson_cosine | -0.0979 |
232
- | spearman_cosine | -0.1037 |
233
- | pearson_manhattan | -0.0987 |
234
- | spearman_manhattan | -0.1005 |
235
- | pearson_euclidean | -0.0981 |
236
- | spearman_euclidean | -0.0998 |
237
- | pearson_dot | -0.0822 |
238
- | spearman_dot | -0.0821 |
239
- | pearson_max | -0.0822 |
240
- | **spearman_max** | **-0.0821** |
241
-
242
- #### Semantic Similarity
243
- * Dataset: `sts-dev`
244
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
245
-
246
- | Metric | Value |
247
- |:-------------------|:------------|
248
- | pearson_cosine | -0.0278 |
249
- | spearman_cosine | -0.035 |
250
- | pearson_manhattan | -0.0355 |
251
- | spearman_manhattan | -0.0387 |
252
- | pearson_euclidean | -0.0356 |
253
- | spearman_euclidean | -0.0389 |
254
- | pearson_dot | -0.0092 |
255
- | spearman_dot | -0.0066 |
256
- | pearson_max | -0.0092 |
257
- | **spearman_max** | **-0.0066** |
258
-
259
- <!--
260
- ## Bias, Risks and Limitations
261
-
262
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
263
- -->
264
-
265
- <!--
266
- ### Recommendations
267
-
268
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
269
- -->
270
-
271
- ## Training Details
272
-
273
- ### Training Dataset
274
-
275
- #### Unnamed Dataset
276
-
277
-
278
- * Size: 10,330 training samples
279
- * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
280
- * Approximate statistics based on the first 1000 samples:
281
- | | sentence_0 | sentence_1 | label |
282
- |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
283
- | type | string | string | int |
284
- | details | <ul><li>min: 10 tokens</li><li>mean: 30.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>0: ~33.50%</li><li>1: ~32.70%</li><li>2: ~33.80%</li></ul> |
285
- * Samples:
286
- | sentence_0 | sentence_1 | label |
287
- |:-----------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------|
288
- | <code>Ini adalah coup de grâce dan dorongan yang dibutuhkan oleh para pendatang untuk mendapatkan kemerdekaan mereka.</code> | <code>Pendatang tidak mendapatkan kemerdekaan.</code> | <code>2</code> |
289
- | <code>Dua bayi almarhum Raja, Diana dan Suharna, diculik.</code> | <code>Jumlah bayi raja yang diculik sudah mencapai 2 bayi.</code> | <code>1</code> |
290
- | <code>Sebuah penelitian menunjukkan bahwa mengkonsumsi makanan yang tinggi kadar gulanya bisa meningkatkan rasa haus.</code> | <code>Tidak ada penelitian yang bertopik makanan yang kadar gulanya tinggi.</code> | <code>2</code> |
291
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
292
- ```json
293
- {
294
- "scale": 20.0,
295
- "similarity_fct": "cos_sim"
296
- }
297
- ```
298
-
299
- ### Training Hyperparameters
300
- #### Non-Default Hyperparameters
301
-
302
- - `eval_strategy`: steps
303
- - `per_device_train_batch_size`: 4
304
- - `per_device_eval_batch_size`: 4
305
- - `num_train_epochs`: 20
306
- - `multi_dataset_batch_sampler`: round_robin
307
-
308
- #### All Hyperparameters
309
- <details><summary>Click to expand</summary>
310
-
311
- - `overwrite_output_dir`: False
312
- - `do_predict`: False
313
- - `eval_strategy`: steps
314
- - `prediction_loss_only`: True
315
- - `per_device_train_batch_size`: 4
316
- - `per_device_eval_batch_size`: 4
317
- - `per_gpu_train_batch_size`: None
318
- - `per_gpu_eval_batch_size`: None
319
- - `gradient_accumulation_steps`: 1
320
- - `eval_accumulation_steps`: None
321
- - `learning_rate`: 5e-05
322
- - `weight_decay`: 0.0
323
- - `adam_beta1`: 0.9
324
- - `adam_beta2`: 0.999
325
- - `adam_epsilon`: 1e-08
326
- - `max_grad_norm`: 1
327
- - `num_train_epochs`: 20
328
- - `max_steps`: -1
329
- - `lr_scheduler_type`: linear
330
- - `lr_scheduler_kwargs`: {}
331
- - `warmup_ratio`: 0.0
332
- - `warmup_steps`: 0
333
- - `log_level`: passive
334
- - `log_level_replica`: warning
335
- - `log_on_each_node`: True
336
- - `logging_nan_inf_filter`: True
337
- - `save_safetensors`: True
338
- - `save_on_each_node`: False
339
- - `save_only_model`: False
340
- - `restore_callback_states_from_checkpoint`: False
341
- - `no_cuda`: False
342
- - `use_cpu`: False
343
- - `use_mps_device`: False
344
- - `seed`: 42
345
- - `data_seed`: None
346
- - `jit_mode_eval`: False
347
- - `use_ipex`: False
348
- - `bf16`: False
349
- - `fp16`: False
350
- - `fp16_opt_level`: O1
351
- - `half_precision_backend`: auto
352
- - `bf16_full_eval`: False
353
- - `fp16_full_eval`: False
354
- - `tf32`: None
355
- - `local_rank`: 0
356
- - `ddp_backend`: None
357
- - `tpu_num_cores`: None
358
- - `tpu_metrics_debug`: False
359
- - `debug`: []
360
- - `dataloader_drop_last`: False
361
- - `dataloader_num_workers`: 0
362
- - `dataloader_prefetch_factor`: None
363
- - `past_index`: -1
364
- - `disable_tqdm`: False
365
- - `remove_unused_columns`: True
366
- - `label_names`: None
367
- - `load_best_model_at_end`: False
368
- - `ignore_data_skip`: False
369
- - `fsdp`: []
370
- - `fsdp_min_num_params`: 0
371
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
372
- - `fsdp_transformer_layer_cls_to_wrap`: None
373
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
374
- - `deepspeed`: None
375
- - `label_smoothing_factor`: 0.0
376
- - `optim`: adamw_torch
377
- - `optim_args`: None
378
- - `adafactor`: False
379
- - `group_by_length`: False
380
- - `length_column_name`: length
381
- - `ddp_find_unused_parameters`: None
382
- - `ddp_bucket_cap_mb`: None
383
- - `ddp_broadcast_buffers`: False
384
- - `dataloader_pin_memory`: True
385
- - `dataloader_persistent_workers`: False
386
- - `skip_memory_metrics`: True
387
- - `use_legacy_prediction_loop`: False
388
- - `push_to_hub`: False
389
- - `resume_from_checkpoint`: None
390
- - `hub_model_id`: None
391
- - `hub_strategy`: every_save
392
- - `hub_private_repo`: False
393
- - `hub_always_push`: False
394
- - `gradient_checkpointing`: False
395
- - `gradient_checkpointing_kwargs`: None
396
- - `include_inputs_for_metrics`: False
397
- - `eval_do_concat_batches`: True
398
- - `fp16_backend`: auto
399
- - `push_to_hub_model_id`: None
400
- - `push_to_hub_organization`: None
401
- - `mp_parameters`:
402
- - `auto_find_batch_size`: False
403
- - `full_determinism`: False
404
- - `torchdynamo`: None
405
- - `ray_scope`: last
406
- - `ddp_timeout`: 1800
407
- - `torch_compile`: False
408
- - `torch_compile_backend`: None
409
- - `torch_compile_mode`: None
410
- - `dispatch_batches`: None
411
- - `split_batches`: None
412
- - `include_tokens_per_second`: False
413
- - `include_num_input_tokens_seen`: False
414
- - `neftune_noise_alpha`: None
415
- - `optim_target_modules`: None
416
- - `batch_eval_metrics`: False
417
- - `batch_sampler`: batch_sampler
418
- - `multi_dataset_batch_sampler`: round_robin
419
-
420
- </details>
421
-
422
- ### Training Logs
423
- <details><summary>Click to expand</summary>
424
-
425
- | Epoch | Step | Training Loss | sts-dev_spearman_max |
426
- |:-------:|:-----:|:-------------:|:--------------------:|
427
- | 0.0998 | 129 | - | -0.0821 |
428
- | 0.0999 | 258 | - | -0.0541 |
429
- | 0.1936 | 500 | 0.0322 | - |
430
- | 0.1998 | 516 | - | -0.0474 |
431
- | 0.2997 | 774 | - | -0.0369 |
432
- | 0.3871 | 1000 | 0.0157 | - |
433
- | 0.3995 | 1032 | - | -0.0371 |
434
- | 0.4994 | 1290 | - | -0.0388 |
435
- | 0.5807 | 1500 | 0.0109 | - |
436
- | 0.5993 | 1548 | - | -0.0284 |
437
- | 0.6992 | 1806 | - | -0.0293 |
438
- | 0.7743 | 2000 | 0.0112 | - |
439
- | 0.7991 | 2064 | - | -0.0176 |
440
- | 0.8990 | 2322 | - | -0.0290 |
441
- | 0.9679 | 2500 | 0.0104 | - |
442
- | 0.9988 | 2580 | - | -0.0128 |
443
- | 1.0 | 2583 | - | -0.0123 |
444
- | 1.0987 | 2838 | - | -0.0200 |
445
- | 1.1614 | 3000 | 0.0091 | - |
446
- | 1.1986 | 3096 | - | -0.0202 |
447
- | 1.2985 | 3354 | - | -0.0204 |
448
- | 1.3550 | 3500 | 0.0052 | - |
449
- | 1.3984 | 3612 | - | -0.0231 |
450
- | 1.4983 | 3870 | - | -0.0312 |
451
- | 1.5486 | 4000 | 0.0017 | - |
452
- | 1.5981 | 4128 | - | -0.0277 |
453
- | 1.6980 | 4386 | - | -0.0366 |
454
- | 1.7422 | 4500 | 0.0054 | - |
455
- | 1.7979 | 4644 | - | -0.0192 |
456
- | 1.8978 | 4902 | - | -0.0224 |
457
- | 1.9357 | 5000 | 0.0048 | - |
458
- | 1.9977 | 5160 | - | -0.0240 |
459
- | 2.0 | 5166 | - | -0.0248 |
460
- | 2.0976 | 5418 | - | -0.0374 |
461
- | 2.1293 | 5500 | 0.0045 | - |
462
- | 2.1974 | 5676 | - | -0.0215 |
463
- | 2.2973 | 5934 | - | -0.0329 |
464
- | 2.3229 | 6000 | 0.0047 | - |
465
- | 2.3972 | 6192 | - | -0.0284 |
466
- | 2.4971 | 6450 | - | -0.0370 |
467
- | 2.5165 | 6500 | 0.0037 | - |
468
- | 2.5970 | 6708 | - | -0.0390 |
469
- | 2.6969 | 6966 | - | -0.0681 |
470
- | 2.7100 | 7000 | 0.0128 | - |
471
- | 2.7967 | 7224 | - | -0.0343 |
472
- | 2.8966 | 7482 | - | -0.0413 |
473
- | 2.9036 | 7500 | 0.0055 | - |
474
- | 2.9965 | 7740 | - | -0.0416 |
475
- | 3.0 | 7749 | - | -0.0373 |
476
- | 3.0964 | 7998 | - | -0.0630 |
477
- | 3.0972 | 8000 | 0.0016 | - |
478
- | 3.1963 | 8256 | - | -0.0401 |
479
- | 3.2907 | 8500 | 0.0018 | - |
480
- | 3.2962 | 8514 | - | -0.0303 |
481
- | 3.3961 | 8772 | - | -0.0484 |
482
- | 3.4843 | 9000 | 0.0017 | - |
483
- | 3.4959 | 9030 | - | -0.0619 |
484
- | 3.5958 | 9288 | - | -0.0411 |
485
- | 3.6779 | 9500 | 0.007 | - |
486
- | 3.6957 | 9546 | - | -0.0408 |
487
- | 3.7956 | 9804 | - | -0.0368 |
488
- | 3.8715 | 10000 | 0.0029 | - |
489
- | 3.8955 | 10062 | - | -0.0429 |
490
- | 3.9954 | 10320 | - | -0.0526 |
491
- | 4.0 | 10332 | - | -0.0494 |
492
- | 4.0650 | 10500 | 0.0004 | - |
493
- | 4.0952 | 10578 | - | -0.0385 |
494
- | 4.1951 | 10836 | - | -0.0467 |
495
- | 4.2586 | 11000 | 0.0004 | - |
496
- | 4.2950 | 11094 | - | -0.0500 |
497
- | 4.3949 | 11352 | - | -0.0458 |
498
- | 4.4522 | 11500 | 0.0011 | - |
499
- | 4.4948 | 11610 | - | -0.0389 |
500
- | 4.5947 | 11868 | - | -0.0401 |
501
- | 4.6458 | 12000 | 0.0046 | - |
502
- | 4.6945 | 12126 | - | -0.0370 |
503
- | 4.7944 | 12384 | - | -0.0495 |
504
- | 4.8393 | 12500 | 0.0104 | - |
505
- | 4.8943 | 12642 | - | -0.0504 |
506
- | 4.9942 | 12900 | - | -0.0377 |
507
- | 5.0 | 12915 | - | -0.0379 |
508
- | 5.0329 | 13000 | 0.0005 | - |
509
- | 5.0941 | 13158 | - | -0.0617 |
510
- | 5.1940 | 13416 | - | -0.0354 |
511
- | 5.2265 | 13500 | 0.0006 | - |
512
- | 5.2938 | 13674 | - | -0.0514 |
513
- | 5.3937 | 13932 | - | -0.0615 |
514
- | 5.4201 | 14000 | 0.0014 | - |
515
- | 5.4936 | 14190 | - | -0.0574 |
516
- | 5.5935 | 14448 | - | -0.0503 |
517
- | 5.6136 | 14500 | 0.0025 | - |
518
- | 5.6934 | 14706 | - | -0.0512 |
519
- | 5.7933 | 14964 | - | -0.0316 |
520
- | 5.8072 | 15000 | 0.0029 | - |
521
- | 5.8931 | 15222 | - | -0.0475 |
522
- | 5.9930 | 15480 | - | -0.0429 |
523
- | 6.0 | 15498 | - | -0.0377 |
524
- | 6.0008 | 15500 | 0.0003 | - |
525
- | 6.0929 | 15738 | - | -0.0486 |
526
- | 6.1928 | 15996 | - | -0.0512 |
527
- | 6.1943 | 16000 | 0.0002 | - |
528
- | 6.2927 | 16254 | - | -0.0383 |
529
- | 6.3879 | 16500 | 0.0017 | - |
530
- | 6.3926 | 16512 | - | -0.0460 |
531
- | 6.4925 | 16770 | - | -0.0439 |
532
- | 6.5815 | 17000 | 0.0046 | - |
533
- | 6.5923 | 17028 | - | -0.0378 |
534
- | 6.6922 | 17286 | - | -0.0289 |
535
- | 6.7751 | 17500 | 0.0081 | - |
536
- | 6.7921 | 17544 | - | -0.0415 |
537
- | 6.8920 | 17802 | - | -0.0451 |
538
- | 6.9686 | 18000 | 0.0021 | - |
539
- | 6.9919 | 18060 | - | -0.0386 |
540
- | 7.0 | 18081 | - | -0.0390 |
541
- | 7.0918 | 18318 | - | -0.0460 |
542
- | 7.1622 | 18500 | 0.0001 | - |
543
- | 7.1916 | 18576 | - | -0.0510 |
544
- | 7.2915 | 18834 | - | -0.0566 |
545
- | 7.3558 | 19000 | 0.0009 | - |
546
- | 7.3914 | 19092 | - | -0.0479 |
547
- | 7.4913 | 19350 | - | -0.0456 |
548
- | 7.5494 | 19500 | 0.0019 | - |
549
- | 7.5912 | 19608 | - | -0.0371 |
550
- | 7.6911 | 19866 | - | -0.0184 |
551
- | 7.7429 | 20000 | 0.003 | - |
552
- | 7.7909 | 20124 | - | -0.0312 |
553
- | 7.8908 | 20382 | - | -0.0307 |
554
- | 7.9365 | 20500 | 0.0008 | - |
555
- | 7.9907 | 20640 | - | -0.0291 |
556
- | 8.0 | 20664 | - | -0.0298 |
557
- | 8.0906 | 20898 | - | -0.0452 |
558
- | 8.1301 | 21000 | 0.0001 | - |
559
- | 8.1905 | 21156 | - | -0.0405 |
560
- | 8.2904 | 21414 | - | -0.0417 |
561
- | 8.3237 | 21500 | 0.0007 | - |
562
- | 8.3902 | 21672 | - | -0.0430 |
563
- | 8.4901 | 21930 | - | -0.0487 |
564
- | 8.5172 | 22000 | 0.0 | - |
565
- | 8.5900 | 22188 | - | -0.0471 |
566
- | 8.6899 | 22446 | - | -0.0361 |
567
- | 8.7108 | 22500 | 0.0037 | - |
568
- | 8.7898 | 22704 | - | -0.0443 |
569
- | 8.8897 | 22962 | - | -0.0404 |
570
- | 8.9044 | 23000 | 0.0009 | - |
571
- | 8.9895 | 23220 | - | -0.0421 |
572
- | 9.0 | 23247 | - | -0.0425 |
573
- | 9.0894 | 23478 | - | -0.0451 |
574
- | 9.0979 | 23500 | 0.0001 | - |
575
- | 9.1893 | 23736 | - | -0.0458 |
576
- | 9.2892 | 23994 | - | -0.0479 |
577
- | 9.2915 | 24000 | 0.0 | - |
578
- | 9.3891 | 24252 | - | -0.0400 |
579
- | 9.4851 | 24500 | 0.0014 | - |
580
- | 9.4890 | 24510 | - | -0.0374 |
581
- | 9.5889 | 24768 | - | -0.0454 |
582
- | 9.6787 | 25000 | 0.0075 | - |
583
- | 9.6887 | 25026 | - | -0.0230 |
584
- | 9.7886 | 25284 | - | -0.0345 |
585
- | 9.8722 | 25500 | 0.0007 | - |
586
- | 9.8885 | 25542 | - | -0.0301 |
587
- | 9.9884 | 25800 | - | -0.0363 |
588
- | 10.0 | 25830 | - | -0.0375 |
589
- | 10.0658 | 26000 | 0.0001 | - |
590
- | 10.0883 | 26058 | - | -0.0381 |
591
- | 10.1882 | 26316 | - | -0.0386 |
592
- | 10.2594 | 26500 | 0.0 | - |
593
- | 10.2880 | 26574 | - | -0.0390 |
594
- | 10.3879 | 26832 | - | -0.0366 |
595
- | 10.4530 | 27000 | 0.0007 | - |
596
- | 10.4878 | 27090 | - | -0.0464 |
597
- | 10.5877 | 27348 | - | -0.0509 |
598
- | 10.6465 | 27500 | 0.0021 | - |
599
- | 10.6876 | 27606 | - | -0.0292 |
600
- | 10.7875 | 27864 | - | -0.0514 |
601
- | 10.8401 | 28000 | 0.0017 | - |
602
- | 10.8873 | 28122 | - | -0.0485 |
603
- | 10.9872 | 28380 | - | -0.0471 |
604
- | 11.0 | 28413 | - | -0.0468 |
605
- | 11.0337 | 28500 | 0.0 | - |
606
- | 11.0871 | 28638 | - | -0.0460 |
607
- | 11.1870 | 28896 | - | -0.0450 |
608
- | 11.2273 | 29000 | 0.0 | - |
609
- | 11.2869 | 29154 | - | -0.0457 |
610
- | 11.3868 | 29412 | - | -0.0450 |
611
- | 11.4208 | 29500 | 0.0008 | - |
612
- | 11.4866 | 29670 | - | -0.0440 |
613
- | 11.5865 | 29928 | - | -0.0384 |
614
- | 11.6144 | 30000 | 0.0028 | - |
615
- | 11.6864 | 30186 | - | -0.0066 |
616
-
617
- </details>
618
-
619
- ### Framework Versions
620
- - Python: 3.10.12
621
- - Sentence Transformers: 3.0.1
622
- - Transformers: 4.41.2
623
- - PyTorch: 2.3.0+cu121
624
- - Accelerate: 0.31.0
625
- - Datasets: 2.19.2
626
- - Tokenizers: 0.19.1
627
-
628
- ## Citation
629
-
630
- ### BibTeX
631
-
632
- #### Sentence Transformers
633
- ```bibtex
634
- @inproceedings{reimers-2019-sentence-bert,
635
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
636
- author = "Reimers, Nils and Gurevych, Iryna",
637
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
638
- month = "11",
639
- year = "2019",
640
- publisher = "Association for Computational Linguistics",
641
- url = "https://arxiv.org/abs/1908.10084",
642
- }
643
- ```
644
-
645
- #### MultipleNegativesRankingLoss
646
- ```bibtex
647
- @misc{henderson2017efficient,
648
- title={Efficient Natural Language Response Suggestion for Smart Reply},
649
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
650
- year={2017},
651
- eprint={1705.00652},
652
- archivePrefix={arXiv},
653
- primaryClass={cs.CL}
654
- }
655
- ```
656
-
657
- <!--
658
- ## Glossary
659
-
660
- *Clearly define terms in order to be accessible across audiences.*
661
- -->
662
-
663
- <!--
664
- ## Model Card Authors
665
-
666
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
667
- -->
668
-
669
- <!--
670
- ## Model Card Contact
671
-
672
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
673
- -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  pipeline_tag: sentence-similarity
2
+ tags:
3
+ - sentence-transformers
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - transformers
7
+ datasets:
8
+ - indonli
9
+ language:
10
+ - id