Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -6,9 +6,9 @@ base_model: | |
| 6 | 
             
            ---
         | 
| 7 | 
             
            # Libra: Large Chinese-based Safeguard for AI Content
         | 
| 8 |  | 
| 9 | 
            -
            **Libra | 
| 10 |  | 
| 11 | 
            -
            ***Libra | 
| 12 |  | 
| 13 | 
             
            同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen2.5-14B-Instruct的仓库。  
         | 
| 14 |  | 
| @@ -30,9 +30,9 @@ pip install transformers>=4.37.0 | |
| 30 | 
             
            ```
         | 
| 31 |  | 
| 32 | 
             
            ## 实验结果(Experiment Results)
         | 
| 33 | 
            -
            在 Libra  | 
| 34 |  | 
| 35 | 
            -
            *In the multi-scenario evaluation on Libra | 
| 36 |  | 
| 37 | 
             
            | 模型                               | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
         | 
| 38 | 
             
            |------------------------------------|-----------|--------|----------|----------|
         | 
| @@ -118,14 +118,15 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| 118 | 
             
            *If you use this project in academic or research scenarios, please cite the following references:*
         | 
| 119 |  | 
| 120 | 
             
            ```bibtex
         | 
| 121 | 
            -
            @misc{ | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
             | 
|  | |
| 126 | 
             
            }
         | 
| 127 | 
             
            ```
         | 
| 128 |  | 
| 129 | 
            -
            感谢对 Libra | 
| 130 |  | 
| 131 | 
            -
            *Thank you for your interest in Libra | 
|  | |
| 6 | 
             
            ---
         | 
| 7 | 
             
            # Libra: Large Chinese-based Safeguard for AI Content
         | 
| 8 |  | 
| 9 | 
            +
            **Libra-Guard** 是一款面向中文大型语言模型(LLM)的安全护栏模型。Libra-Guard 采用两阶段渐进式训练流程,先利用可扩展的合成样本预训练,再使用高质量真实数据进行微调,最大化利用数据并降低对人工标注的依赖。实验表明,Libra-Guard 在 Libra-Test 上的表现显著优于同类开源模型(如 ShieldLM等),在多个任务上可与先进商用模型(如 GPT-4o)接近,为中文 LLM 的安全治理提供了更强的支持与评测工具。  
         | 
| 10 |  | 
| 11 | 
            +
            ***Libra-Guard** is a safeguard model for Chinese large language models (LLMs). Libra-Guard adopts a two-stage progressive training process: first, it uses scalable synthetic samples for pretraining, then employs high-quality real-world data for fine-tuning, thus maximizing data utilization while reducing reliance on manual annotation. Experiments show that Libra-Guard significantly outperforms similar open-source models (such as ShieldLM) on Libra-Test and is close to advanced commercial models (such as GPT-4o) in multiple tasks, providing stronger support and evaluation tools for Chinese LLM safety governance.*
         | 
| 12 |  | 
| 13 | 
             
            同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen2.5-14B-Instruct的仓库。  
         | 
| 14 |  | 
|  | |
| 30 | 
             
            ```
         | 
| 31 |  | 
| 32 | 
             
            ## 实验结果(Experiment Results)
         | 
| 33 | 
            +
            在 Libra-Test 的多场景评测中,Libra-Guard 系列模型相较于同类开源模型(如 ShieldLM)表现更佳,并在多个任务上与先进商用模型(如 GPT-4o)相当。下表给出了 Libra-Guard-Qwen2.5-14B-Instruct 在部分核心指标上的对比:  
         | 
| 34 |  | 
| 35 | 
            +
            *In the multi-scenario evaluation on Libra-Test, the Libra-Guard series outperforms similar open-source models such as ShieldLM, and is on par with advanced commercial models like GPT-4o in multiple tasks. The table below shows a comparison of Libra-Guard-Qwen2.5-14B-Instruct on some key metrics:*
         | 
| 36 |  | 
| 37 | 
             
            | 模型                               | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
         | 
| 38 | 
             
            |------------------------------------|-----------|--------|----------|----------|
         | 
|  | |
| 118 | 
             
            *If you use this project in academic or research scenarios, please cite the following references:*
         | 
| 119 |  | 
| 120 | 
             
            ```bibtex
         | 
| 121 | 
            +
            @misc{libra,
         | 
| 122 | 
            +
                title = {Libra: Large Chinese-based Safeguard for AI Content},
         | 
| 123 | 
            +
                url = {https://github.com/caskcsg/Libra/},
         | 
| 124 | 
            +
                author= {Li, Ziyang and Yu, Huimu and Wu, Xing and Lin, Yuxuan and Liu, Dingqin and Hu, Songlin},
         | 
| 125 | 
            +
                month = {January},
         | 
| 126 | 
            +
                year = {2025}
         | 
| 127 | 
             
            }
         | 
| 128 | 
             
            ```
         | 
| 129 |  | 
| 130 | 
            +
            感谢对 Libra-Guard 的关注与使用,如有任何问题或建议,欢迎提交 Issue 或 Pull Request!
         | 
| 131 |  | 
| 132 | 
            +
            *Thank you for your interest in Libra-Guard. If you have any questions or suggestions, feel free to submit an Issue or Pull Request!*
         |