AvivBick commited on
Commit
ee0d44a
·
verified ·
1 Parent(s): 5398256

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -3
README.md CHANGED
@@ -1,3 +1,40 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Llamba Models
2
+
3
+ The Llamba models are part of Cartesia's [Edge](https://github.com/cartesia-ai/edge) library, designed for efficient, high-performance machine learning applications.
4
+
5
+ For more details, refer to the [paper](#).
6
+
7
+ ---
8
+ ## Usage
9
+
10
+ ### Llamba on PyTorch
11
+
12
+ To use Llamba with PyTorch:
13
+
14
+ 1. Install the required package:
15
+ ```bash
16
+ pip install --no-binary :all: cartesia-pytorch
17
+ ```
18
+ 2. Load and run the model
19
+ ```python
20
+ from transformers import AutoTokenizer
21
+ from cartesia_pytorch.Llamba.llamba import LlambaLMHeadModel
22
+
23
+ model = LlambaLMHeadModel.from_pretrained("AvivBick/Llamba-3B", strict=True).to('cuda')
24
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B")
25
+ input_ids = tokenizer("Hello, my name is", return_tensors="pt").input_ids
26
+ input_ids = input_ids.to('cuda')
27
+ output = model.generate(input_ids, max_length=100)[0]
28
+ print(tokenizer.decode(output, skip_special_tokens=True))
29
+ ```
30
+
31
+ ### Llamba on MLX
32
+
33
+ To run Llamba with the Metal framework:
34
+ _(Add specific instructions here when available.)_
35
+
36
+ ---
37
+ ### Evaluations
38
+
39
+ Details on model performance, benchmarks, and evaluation metrics can be found in the [paper link](#).
40
+ _(Expand on this section if specific results or datasets are available.)_