cardiffnlp
commited on
Commit
Β·
dafba98
1
Parent(s):
12c1452
Readme
Browse files- .ipynb_checkpoints/README-checkpoint.md +77 -0
- README.md +27 -1
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Twitter-roBERTa-base
|
| 2 |
+
|
| 3 |
+
This is a roBERTa-base model trained on ~58M tweets, described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
| 4 |
+
|
| 5 |
+
## Example Masked Language Model
|
| 6 |
+
|
| 7 |
+
```python
|
| 8 |
+
from transformers import pipeline, AutoTokenizer
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
| 12 |
+
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 14 |
+
|
| 15 |
+
def print_candidates():
|
| 16 |
+
for i in range(5):
|
| 17 |
+
token = tokenizer.decode(candidates[i]['token'])
|
| 18 |
+
score = np.round(candidates[i]['score'], 4)
|
| 19 |
+
print(f"{i+1}) {token} {score}")
|
| 20 |
+
|
| 21 |
+
texts = [
|
| 22 |
+
"I am so <mask> π",
|
| 23 |
+
"I am so <mask> π’"
|
| 24 |
+
]
|
| 25 |
+
for text in texts:
|
| 26 |
+
print(f"{'-'*30}\n{text}")
|
| 27 |
+
candidates = fill_mask(text)
|
| 28 |
+
print_candidates()
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
Output:
|
| 32 |
+
|
| 33 |
+
```
|
| 34 |
+
------------------------------
|
| 35 |
+
I am so <mask> π
|
| 36 |
+
1) happy 0.402
|
| 37 |
+
2) excited 0.1441
|
| 38 |
+
3) proud 0.143
|
| 39 |
+
4) grateful 0.0669
|
| 40 |
+
5) blessed 0.0334
|
| 41 |
+
------------------------------
|
| 42 |
+
I am so <mask> π’
|
| 43 |
+
1) sad 0.2641
|
| 44 |
+
2) sorry 0.1605
|
| 45 |
+
3) tired 0.138
|
| 46 |
+
4) sick 0.0278
|
| 47 |
+
5) hungry 0.0232
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## Example Feature Extraction
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
| 54 |
+
import numpy as np
|
| 55 |
+
|
| 56 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
| 57 |
+
text = "Good night π"
|
| 58 |
+
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 60 |
+
|
| 61 |
+
# Pytorch
|
| 62 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 63 |
+
model = AutoModel.from_pretrained(MODEL)
|
| 64 |
+
features = model(**encoded_input)
|
| 65 |
+
features = features[0].detach().cpu().numpy()
|
| 66 |
+
features_mean = np.mean(features[0], axis=0)
|
| 67 |
+
#features_max = np.max(features[0], axis=0)
|
| 68 |
+
|
| 69 |
+
# # Tensorflow
|
| 70 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
| 71 |
+
# model = TFAutoModel.from_pretrained(MODEL)
|
| 72 |
+
# features = model(encoded_input)
|
| 73 |
+
# features = features[0].numpy()
|
| 74 |
+
# features_mean = np.mean(features[0], axis=0)
|
| 75 |
+
# #features_max = np.max(features[0], axis=0)
|
| 76 |
+
|
| 77 |
+
```
|
README.md
CHANGED
|
@@ -48,4 +48,30 @@ I am so <mask> π’
|
|
| 48 |
```
|
| 49 |
|
| 50 |
## Example Feature Extraction
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
```
|
| 49 |
|
| 50 |
## Example Feature Extraction
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from transformers import AutoTokenizer, AutoModel, TFAutoModel
|
| 54 |
+
import numpy as np
|
| 55 |
+
|
| 56 |
+
MODEL = "cardiffnlp/twitter-roberta-base"
|
| 57 |
+
text = "Good night π"
|
| 58 |
+
|
| 59 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 60 |
+
|
| 61 |
+
# Pytorch
|
| 62 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 63 |
+
model = AutoModel.from_pretrained(MODEL)
|
| 64 |
+
features = model(**encoded_input)
|
| 65 |
+
features = features[0].detach().cpu().numpy()
|
| 66 |
+
features_mean = np.mean(features[0], axis=0)
|
| 67 |
+
#features_max = np.max(features[0], axis=0)
|
| 68 |
+
|
| 69 |
+
# # Tensorflow
|
| 70 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
| 71 |
+
# model = TFAutoModel.from_pretrained(MODEL)
|
| 72 |
+
# features = model(encoded_input)
|
| 73 |
+
# features = features[0].numpy()
|
| 74 |
+
# features_mean = np.mean(features[0], axis=0)
|
| 75 |
+
# #features_max = np.max(features[0], axis=0)
|
| 76 |
+
|
| 77 |
+
```
|