--- license: apache-2.0 base_model: parambharat/whisper-tiny-south-indic tags: - generated_from_trainer metrics: - accuracy model-index: - name: whisper-tiny-south-indic-audio-abuse-feature results: [] --- # whisper-tiny-south-indic-audio-abuse-feature This model is a fine-tuned version of [parambharat/whisper-tiny-south-indic](https://huggingface.co/parambharat/whisper-tiny-south-indic) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8754 - Accuracy: 0.8091 - Macro F1-score: 0.7326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:| | 7.6265 | 0.29 | 10 | 7.5999 | 0.0 | 0.0 | | 7.5514 | 0.58 | 20 | 7.4739 | 0.0 | 0.0 | | 7.3762 | 0.86 | 30 | 7.2108 | 0.7073 | 0.2762 | | 7.0242 | 1.15 | 40 | 6.6877 | 0.7114 | 0.4157 | | 6.421 | 1.44 | 50 | 6.0112 | 0.7114 | 0.4157 | | 5.7786 | 1.73 | 60 | 5.4468 | 0.7114 | 0.4157 | | 5.2429 | 2.01 | 70 | 4.9849 | 0.7114 | 0.4157 | | 4.8449 | 2.3 | 80 | 4.5921 | 0.7114 | 0.4157 | | 4.5013 | 2.59 | 90 | 4.2484 | 0.7114 | 0.4157 | | 4.1317 | 2.88 | 100 | 3.9375 | 0.7114 | 0.4157 | | 3.8904 | 3.17 | 110 | 3.6543 | 0.7114 | 0.4157 | | 3.5933 | 3.45 | 120 | 3.3909 | 0.7114 | 0.4157 | | 3.3129 | 3.74 | 130 | 3.1460 | 0.7114 | 0.4157 | | 3.0954 | 4.03 | 140 | 2.9201 | 0.7114 | 0.4157 | | 2.8817 | 4.32 | 150 | 2.7098 | 0.7114 | 0.4157 | | 2.7003 | 4.6 | 160 | 2.5173 | 0.7114 | 0.4157 | | 2.5074 | 4.89 | 170 | 2.3380 | 0.7114 | 0.4157 | | 2.3684 | 5.18 | 180 | 2.1744 | 0.7114 | 0.4157 | | 2.1876 | 5.47 | 190 | 2.0227 | 0.7114 | 0.4157 | | 2.0526 | 5.76 | 200 | 1.8856 | 0.7114 | 0.4157 | | 1.8551 | 6.04 | 210 | 1.7647 | 0.7114 | 0.4157 | | 1.7855 | 6.33 | 220 | 1.6472 | 0.7114 | 0.4157 | | 1.7239 | 6.62 | 230 | 1.5505 | 0.7358 | 0.4996 | | 1.5197 | 6.91 | 240 | 1.4623 | 0.7114 | 0.4157 | | 1.485 | 7.19 | 250 | 1.3723 | 0.7439 | 0.5250 | | 1.4318 | 7.48 | 260 | 1.2978 | 0.7642 | 0.5914 | | 1.3828 | 7.77 | 270 | 1.2308 | 0.7805 | 0.6390 | | 1.1559 | 8.06 | 280 | 1.1848 | 0.7398 | 0.5124 | | 1.1692 | 8.35 | 290 | 1.1189 | 0.7886 | 0.6581 | | 1.2058 | 8.63 | 300 | 1.0709 | 0.7846 | 0.6486 | | 1.1676 | 8.92 | 310 | 1.0313 | 0.7886 | 0.6635 | | 1.0257 | 9.21 | 320 | 0.9966 | 0.7886 | 0.6581 | | 0.9943 | 9.5 | 330 | 0.9652 | 0.7886 | 0.6635 | | 0.9894 | 9.78 | 340 | 0.9398 | 0.7927 | 0.6726 | | 1.0581 | 10.07 | 350 | 0.9206 | 0.8171 | 0.7313 | | 0.9395 | 10.36 | 360 | 0.9003 | 0.8008 | 0.6992 | | 0.9766 | 10.65 | 370 | 0.8873 | 0.7886 | 0.6687 | | 0.9291 | 10.94 | 380 | 0.8759 | 0.8089 | 0.7155 | | 0.8967 | 11.22 | 390 | 0.8704 | 0.7927 | 0.6726 | | 0.9463 | 11.51 | 400 | 0.8656 | 0.7967 | 0.6862 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3