File size: 5,551 Bytes
839e100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
#!/bin/bash
#
# Copyright 2024 PKU-Alignment Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
if [ -z "${BASH_VERSION}" ]; then
echo "Please use bash to run this script." >&2
exit 1
fi
VIDEO_DIR="/home/juntao/Data/safe-sora/videos"
TRAIN_DATA_PATH="/home/juntao/Data/safe-sora/unsafe_pairs/config-train.json"
EVAL_DATA_PATH="/home/juntao/Data/safe-sora/unsafe_pairs/config-test.json"
MODEL_NAME_OR_PATH="/home/juntao/Models/LanguageBind/Video-LLaVA-7B"
MM_MLP_ADAPTER_PATH="/home/juntao/Models/LanguageBind/Video-LLaVA-Pretrain-7B/mm_projector.bin"
OUTPUT_DIR="./outputs/cost"
DIMENSION="harmlessness"
# VIDEO_DIR="/home/juntao/Projects/safe-sora/data/SafeSora/videos"
# TRAIN_DATA_PATH="/home/juntao/Projects/safe-sora/data/SafeSora/config-train.json.gz"
# EVAL_DATA_PATH="/home/juntao/Projects/safe-sora/data/SafeSora/config-test.json.gz"
# MODEL_NAME_OR_PATH="/home/juntao/Models/LanguageBind/Video-LLaVA-7B"
# MM_MLP_ADAPTER_PATH="/home/juntao/Models/LanguageBind/Video-LLaVA-Pretrain-7B/mm_projector.bin"
# OUTPUT_DIR="/home/juntao/Projects/Learning/safe-sora/examples/outputs/goodgood"
# DIMENSION="helpfulness"
while [[ "$#" -gt 0 ]]; do
arg="$1"
shift
case "${arg}" in
--video_dir)
VIDEO_DIR="$1"
shift
;;
--video_dir=*)
VIDEO_DIR="${arg#*=}"
;;
--train_data_path)
TRAIN_DATA_PATH="$1"
shift
;;
--train_data_path=*)
TRAIN_DATA_PATH="${arg#*=}"
;;
--eval_data_path)
EVAL_DATA_PATH="$1"
shift
;;
--eval_data_path=*)
EVAL_DATA_PATH="${arg#*=}"
;;
--model_name_or_path)
MODEL_NAME_OR_PATH="$1"
shift
;;
--model_name_or_path=*)
MODEL_NAME_OR_PATH="${arg#*=}"
;;
--mm_mlp_adapter_path)
MM_MLP_ADAPTER_PATH="$1"
shift
;;
--mm_mlp_adapter_path=*)
MM_MLP_ADAPTER_PATH="${arg#*=}"
;;
--output_dir)
OUTPUT_DIR="$1"
shift
;;
--output_dir=*)
OUTPUT_DIR="${arg#*=}"
;;
--dimension)
DIMENSION="$1"
shift
;;
--dimension=*)
DIMENSION="${arg#*=}"
;;
*)
echo "Unknown parameter passed: '${arg}'" >&2
exit 1
;;
esac
done
if [[ ! "helpfulness harmlessness instruction_following correctness informativeness aesthetics" =~ (^|[[:space:]])"${DIMENSION}"($|[[:space:]]) ]]; then
echo "Invalid dimension: ${DIMENSION}, should be one of 'helpfulness', 'harmlessness', 'instruction_following', 'correctness', 'informativeness', 'aesthetics'." >&2
exit 1
fi
IMAGE_DIR="${VIDEO_DIR}"
RUN_NAME="reward-${DIMENSION}"
OUTPUT_DIR="${OUTPUT_DIR}/${RUN_NAME}"
mkdir -p "${OUTPUT_DIR}"
OUTPUT_DIR="$(cd "${OUTPUT_DIR}" &>/dev/null && pwd)"
if [[ ! -f "${OUTPUT_DIR}/.gitignore" ]]; then
echo '*' >"${OUTPUT_DIR}/.gitignore"
fi
cp -f "$0" "${OUTPUT_DIR}/script.sh"
MASTER_PORT_START=10000
MASTER_PORT_END=65535
MASTER_PORT="$(
comm -23 \
<(seq "${MASTER_PORT_START}" "${MASTER_PORT_END}" | sort) \
<(ss -Htan | awk '{ print $4 }' | awk -F ':' '{ print $NF }' | sort -u) |
shuf | head -n 1
)"
exec 1> >(tee "${OUTPUT_DIR}/stdout.log" >&1) 2> >(tee "${OUTPUT_DIR}/stderr.log" >&2)
deepspeed --master_port="${MASTER_PORT}" examples/reward_model/train_cost.py \
--deepspeed examples/scripts/ds_zero2.json \
--version v1 \
--run_name "${RUN_NAME}" \
--model_name_or_path "${MODEL_NAME_OR_PATH}" \
--train_data_path "${TRAIN_DATA_PATH}" \
--eval_data_path "${EVAL_DATA_PATH}" \
--preference_dimension "${DIMENSION}" \
--image_dir "${IMAGE_DIR}" \
--video_dir "${VIDEO_DIR}" \
--image_tower LanguageBind/LanguageBind_Image \
--video_tower LanguageBind/LanguageBind_Video_merge \
--mm_projector_type mlp2x_gelu \
--pretrain_mm_mlp_adapter "${MM_MLP_ADAPTER_PATH}" \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--output_dir "${OUTPUT_DIR}" \
--cache_dir "./models/cache_dir" \
--num_train_epochs 4 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "steps" \
--eval_steps 0.0499 \
--load_best_model_at_end True \
--metric_for_best_model "accuracy" \
--greater_is_better True \
--logging_first_step True \
--save_strategy "steps" \
--save_steps 0.0499 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0.1 \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--model_max_length 2048 \
--tokenizer_model_max_length 3072 \
--gradient_checkpointing True \
--dataloader_num_workers 8 \
--report_to wandb \
--bf16 True \
--tf32 True \
--num_frames 8
|