Update handler.py
Browse files- handler.py +29 -14
handler.py
CHANGED
|
@@ -6,9 +6,7 @@ from PIL import Image
|
|
| 6 |
import io
|
| 7 |
import json
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Define class labels (same order as training)
|
| 12 |
CLASS_LABELS = [
|
| 13 |
"glove_outline",
|
| 14 |
"webbing",
|
|
@@ -19,17 +17,10 @@ CLASS_LABELS = [
|
|
| 19 |
]
|
| 20 |
|
| 21 |
# ----------------------------
|
| 22 |
-
# Load model
|
| 23 |
# ----------------------------
|
| 24 |
def load_model():
|
| 25 |
-
model =
|
| 26 |
-
num_classes=len(CLASS_LABELS),
|
| 27 |
-
in_channels=3,
|
| 28 |
-
backbone="vit_b", # <-- match your config.yaml
|
| 29 |
-
freeze_backbone=True,
|
| 30 |
-
use_cls_head=True
|
| 31 |
-
)
|
| 32 |
-
model.load_state_dict(torch.load("pytorch_model.bin", map_location="cpu"))
|
| 33 |
model.eval()
|
| 34 |
return model
|
| 35 |
|
|
@@ -48,11 +39,33 @@ def preprocess(input_bytes):
|
|
| 48 |
tensor = transform(image).unsqueeze(0) # [1, 3, H, W]
|
| 49 |
return tensor
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# ----------------------------
|
| 52 |
# Postprocessing
|
| 53 |
# ----------------------------
|
| 54 |
def postprocess(output_tensor):
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
return pred.tolist()
|
| 57 |
|
| 58 |
# ----------------------------
|
|
@@ -67,8 +80,10 @@ def infer(payload):
|
|
| 67 |
else:
|
| 68 |
raise ValueError("Unsupported input format")
|
| 69 |
|
|
|
|
|
|
|
| 70 |
with torch.no_grad():
|
| 71 |
-
output = model(
|
| 72 |
|
| 73 |
mask = postprocess(output)
|
| 74 |
return {
|
|
|
|
| 6 |
import io
|
| 7 |
import json
|
| 8 |
|
| 9 |
+
# Define class labels (must match training order)
|
|
|
|
|
|
|
| 10 |
CLASS_LABELS = [
|
| 11 |
"glove_outline",
|
| 12 |
"webbing",
|
|
|
|
| 17 |
]
|
| 18 |
|
| 19 |
# ----------------------------
|
| 20 |
+
# Load model directly from full .bin
|
| 21 |
# ----------------------------
|
| 22 |
def load_model():
|
| 23 |
+
model = torch.load("pytorch_model.bin", map_location="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
model.eval()
|
| 25 |
return model
|
| 26 |
|
|
|
|
| 39 |
tensor = transform(image).unsqueeze(0) # [1, 3, H, W]
|
| 40 |
return tensor
|
| 41 |
|
| 42 |
+
# ----------------------------
|
| 43 |
+
# Dummy input wrapper
|
| 44 |
+
# ----------------------------
|
| 45 |
+
class DummyInput:
|
| 46 |
+
def __init__(self, image_tensor):
|
| 47 |
+
B, C, H, W = image_tensor.shape
|
| 48 |
+
self.images = image_tensor
|
| 49 |
+
self.masks = [torch.zeros(B, H, W, dtype=torch.bool)]
|
| 50 |
+
self.num_frames = 1
|
| 51 |
+
self.original_size = [(H, W)]
|
| 52 |
+
self.target_size = [(H, W)]
|
| 53 |
+
self.point_coords = [None]
|
| 54 |
+
self.point_labels = [None]
|
| 55 |
+
self.boxes = [None]
|
| 56 |
+
self.mask_inputs = torch.zeros(B, 1, H, W)
|
| 57 |
+
self.video_mask = torch.zeros(B, 1, H, W)
|
| 58 |
+
self.flat_obj_to_img_idx = [[0]]
|
| 59 |
+
|
| 60 |
# ----------------------------
|
| 61 |
# Postprocessing
|
| 62 |
# ----------------------------
|
| 63 |
def postprocess(output_tensor):
|
| 64 |
+
if isinstance(output_tensor, dict) and "masks" in output_tensor:
|
| 65 |
+
logits = output_tensor["masks"]
|
| 66 |
+
else:
|
| 67 |
+
logits = output_tensor
|
| 68 |
+
pred = torch.argmax(logits, dim=1)[0].cpu().numpy()
|
| 69 |
return pred.tolist()
|
| 70 |
|
| 71 |
# ----------------------------
|
|
|
|
| 80 |
else:
|
| 81 |
raise ValueError("Unsupported input format")
|
| 82 |
|
| 83 |
+
input_obj = DummyInput(image_tensor)
|
| 84 |
+
|
| 85 |
with torch.no_grad():
|
| 86 |
+
output = model(input_obj)
|
| 87 |
|
| 88 |
mask = postprocess(output)
|
| 89 |
return {
|