{ local exp_id = 1, logdir: "logdir/mT5-large-120Ksteps-FIT-en-pt-es-fr-train", model_config: "experiments/spider-configs/mT5-large-FIT-en-pt-es-fr/mT5.jsonnet", model_config_args: { bs: 4, num_batch_accumulated: 2, t5_version: "google/mt5-large", pretrained_checkpoint: "models/mt5-large/pretrained_checkpoint/pytorch_model.bin", summarize_header: "avg", use_column_type: false, num_layers: 8, lr: 1e-4, bert_lr: 1e-5, att: 1, end_lr: 0, sc_link: true, cv_link: true, use_align_mat: true, use_align_loss: true, bart_token_type: true, decoder_hidden_size: 512, end_with_from: true, # equivalent to "SWGOIF" if true clause_order: null, # strings like "SWGOIF", it will be prioriotized over end_with_from }, eval_name: "mT5-large-120Ksteps-FIT-en-pt-es-fr-train_en-pt-es-fr-eval_%d_%s_%d" % [exp_id, self.eval_use_heuristic, self.eval_beam_size], eval_output: "ie_dirs/mt5-large-FIT-en-pt-es-fr-train", eval_beam_size: 1, eval_use_heuristic: true, eval_steps: [ 1000 * x + 100 for x in std.range(100, 190)] + [190300], eval_section: "val", }