|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). |
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned |
|
using a masked language modeling (MLM) loss. |
|
""" |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
import torch |
|
|
|
from transformers import ( |
|
MODEL_WITH_LM_HEAD_MAPPING, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
PreTrainedTokenizer, |
|
set_seed, |
|
) |
|
from relogic.pretrainkit.trainer import Trainer |
|
from relogic.pretrainkit.datasets.semparse.tabart import DataCollatorForTaBART, TaBARTDataset |
|
from relogic.pretrainkit.scorers.match_sequence import MatchSequenceScorer |
|
from relogic.pretrainkit.models.semparse.tabart import TaBARTModel |
|
from relogic.pretrainkit.training_args import TrainingArguments |
|
import relogic.utils.crash_on_ipy |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch." |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
task: Optional[str] = field( |
|
default="mlm", metadata={"help": "Learning target. mlm, col_pred, mlm+col_pred"} |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
train_data_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a text file)."} |
|
) |
|
eval_data_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
line_by_line: bool = field( |
|
default=False, |
|
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, |
|
) |
|
|
|
mlm: bool = field( |
|
default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} |
|
) |
|
mlm_probability: float = field( |
|
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} |
|
) |
|
|
|
block_size: int = field( |
|
default=-1, |
|
metadata={ |
|
"help": "Optional input sequence length after tokenization." |
|
"The training dataset will be truncated in block of this size for training." |
|
"Default to the model max input length for single sentence inputs (take into account special tokens)." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
|
|
|
|
def get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False): |
|
file_path = args.eval_data_file if evaluate else args.train_data_file |
|
return TaBARTDataset(tokenizer=tokenizer, file_path=file_path, col_token="<col>") |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if data_args.eval_data_file is None and training_args.do_eval: |
|
raise ValueError( |
|
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " |
|
"or remove the --do_eval argument." |
|
) |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
training_args.local_rank, |
|
training_args.device, |
|
training_args.n_gpu, |
|
bool(training_args.local_rank != -1), |
|
training_args.fp16, |
|
) |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Initialize models and tokenizer""" |
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it," |
|
"and load it from here, using --tokenizer_name" |
|
) |
|
tokenizer.add_special_tokens({"additional_special_tokens": ["<col>"]}) |
|
model = TaBARTModel() |
|
model.bert.resize_token_embeddings(len(tokenizer)) |
|
|
|
if training_args.do_eval and not training_args.do_train: |
|
model_param = torch.load(os.path.join(model_args.model_name_or_path, "pytorch_model.bin")) |
|
model.load_state_dict(model_param) |
|
print("All key matched and load successfully.") |
|
|
|
if data_args.block_size <= 0: |
|
data_args.block_size = tokenizer.max_len |
|
|
|
else: |
|
data_args.block_size = min(data_args.block_size, tokenizer.max_len) |
|
|
|
|
|
|
|
train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None |
|
eval_dataset = get_dataset(data_args, tokenizer=tokenizer, evaluate=True) if training_args.do_eval else None |
|
|
|
|
|
|
|
data_collator = DataCollatorForTaBART(tokenizer=tokenizer, task=model_args.task) |
|
|
|
match_sequence_scorer = MatchSequenceScorer(bos_id=data_collator.label_bos_id, eos_id=data_collator.label_eos_id, output_path=os.path.join(training_args.output_dir, "eval_dump.json")) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
compute_metrics=match_sequence_scorer |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
model_path = ( |
|
model_args.model_name_or_path |
|
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) |
|
else None |
|
) |
|
trainer.train(model_path=model_path) |
|
trainer.save_model() |
|
|
|
|
|
if trainer.is_world_master(): |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
results = {} |
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
eval_output = trainer.evaluate() |
|
|
|
perplexity = math.exp(eval_output["eval_loss"]) |
|
result = {"perplexity": perplexity} |
|
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") |
|
if trainer.is_world_master(): |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(result[key])) |
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
|
|
results.update(result) |
|
|
|
return results |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|