File size: 10,051 Bytes
d758c99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python

import _jsonnet
import json
import argparse
import collections
import attr
from seq2struct.commands import preprocess, train, infer, eval
import crash_on_ipy
import os
import sys

print(f"python verson{sys.version}")


@attr.s
class PreprocessConfig:
    config = attr.ib()
    config_args = attr.ib()

@attr.s
class TrainConfig:
    config = attr.ib()
    config_args = attr.ib()
    logdir = attr.ib()

@attr.s
class InferConfig:
    config = attr.ib()
    config_args = attr.ib()
    logdir = attr.ib()
    section = attr.ib()
    beam_size = attr.ib()
    output = attr.ib()
    step = attr.ib()
    use_heuristic = attr.ib(default=False)
    mode = attr.ib(default="infer")
    limit = attr.ib(default=None)
    output_history = attr.ib(default=False)

@attr.s
class EvalConfig:
    config = attr.ib()
    config_args = attr.ib()
    logdir = attr.ib()
    section = attr.ib()
    inferred = attr.ib()
    output = attr.ib()


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('data_file', help="Input data json file, ex.: data/")
    parser.add_argument('path_output_file', help="Path to output json file with prediction")
    args = parser.parse_args()
    
    #print(args)
    #print(args.data_file)
    #print(args.path_output_file)
    args.path_output_file = os.path.splitext(args.path_output_file)[0]#remove the extension, for further inclusion (.infer, .txt, .json)
    #print(args.path_output_file)
    
    if not os.path.exists(args.data_file + "dev.json"):
        print(f"\n{args.data_file}dev.json not found.")
        sys.exit(1)
        
    if not os.path.exists(args.data_file + "tables.json"):
        print(f"\n{args.data_file}tables.json not found.")
        sys.exit(1)
 
    
    #Codalab Run-time directory structure
    os.makedirs("preprocess", exist_ok=True)
    os.makedirs("preprocess/spider-en", exist_ok=True)
    os.makedirs("preprocess/spider-en/mT5-large-NoGAP-nl2code-1115,output_from=true,fs=2,emb=t5,cvlink", exist_ok=True)
    os.makedirs("preprocess/spider-en/mT5-large-NoGAP-nl2code-1115,output_from=true,fs=2,emb=t5,cvlink/dec", exist_ok=True)
    os.makedirs("preprocess/spider-en/mT5-large-NoGAP-nl2code-1115,output_from=true,fs=2,emb=t5,cvlink/enc", exist_ok=True)
    print("Run-time directory structure created")
        
    #infer_config["model"]["encoder_preproc"]["db_path"] = "spider/database"
    #print(infer_config)
    #print(model_config_args)
    

    
#    parser = argparse.ArgumentParser()
#    parser.add_argument('mode', help="preprocess/train/eval")
#    parser.add_argument('exp_config_file', help="jsonnet file for experiments")
#    args = parser.parse_args()
    
#    exp_config = json.loads(_jsonnet.evaluate_file(args.exp_config_file))
    #run.py
    exp_config = json.loads(_jsonnet.evaluate_file("experiments/spider-configs/spider-mT5-large-NoGAP-FIT-en-pt-es-fr-train_en-eval.jsonnet"))
    model_config_file = exp_config["model_config"]
    model_config_args = json.dumps(exp_config["model_config_args"])
    infer_config = json.loads(_jsonnet.evaluate_file(model_config_file, tla_codes={'args': model_config_args}))
#    if "model_config_args" in exp_config:
#        model_config_args = json.dumps(exp_config["model_config_args"])
#    else:
#        model_config_args = None
    #meu prediction.py
#    exp_config = json.loads(_jsonnet.evaluate_file("experiments/spider-configs/spider-mT5-large-NoGAP-FIT-en-pt-es-fr-train_en-eval.jsonnet"))   
#    model_config_file = exp_config["model_config"]
#    model_config_args = exp_config.get("model_config_args")
#    infer_config = json.loads(_jsonnet.evaluate_file(model_config_file, tla_codes={'args': json.dumps(model_config_args)}))


    print(f"\nDatabase(model encoder_preproc db_path):{infer_config['model']['encoder_preproc']['db_path']}")
    print(type(infer_config['model']['encoder_preproc']['db_path']))
    print(f"Preprocess folder(model encoder_preproc save_path):{infer_config['model']['encoder_preproc']['save_path']}")
    print(f"Preprocess folder(model decoder_preproc save_path):{infer_config['model']['decoder_preproc']['save_path']}\n")
    
    #print(f"Dataset train(data train paths):{infer_config['data']['train']['paths']}")
    #print(f"Dataset train(data train tables_paths):{infer_config['data']['train']['tables_paths']}")
    #print(f"Database(data train db_path):{infer_config['data']['train']['db_path']}\n")
    
    print(f"Dataset val(data val paths):{infer_config['data']['val']['paths']}")
    print(f"Dataset val(data val tables_paths):{infer_config['data']['val']['tables_paths']}")
    print(f"Database(data val db_path):{infer_config['data']['val']['db_path']}\n")   
   
    #print("Update with command line arguments.")
    #infer_config['data']['val']['paths'] = f"['{args.data_file}dev.json']"
    #infer_config['data']['val']['tables_paths'] = f"['{args.data_file}tables.json']"
    
    #print(f"Dataset val(data val paths):{infer_config['data']['val']['paths']}")
    #print(f"Dataset val (data val tables_paths):{infer_config['data']['val']['tables_paths']}")


   
    #"preprocess":
    print("\nPreprocess\n")
    print(f"\n*********************************************\nmodel_config_file={model_config_file}\nmodel_config_args={model_config_args}\n*********************************************\n")
    preprocess_config = PreprocessConfig(model_config_file, model_config_args)
    print(f"\n*********************************************\npreprocess_config={preprocess_config}\n*********************************************\n")
    preprocess.main2(preprocess_config, args.data_file) 

   
    #File with gold queries 
    gold = open(f"gold_for_{args.path_output_file}.txt", "w", encoding='utf8')
    with open(f"{args.data_file}dev.json", encoding='utf8') as json_data_file:
        data = json.load(json_data_file)
        length = len(data) #tive que fazer pelo tamanho porque o arquivo .json começa com [ em branco ]    
        for i in range(length):
            gold.write(f"{data[i]['query']}\t{data[i]['db_id']}\n")
    json_data_file.close()
    gold.close()
    
   #"Infer and Eval"
    #result = open(f"results_for_{args.path_output_file}.csv", "w", encoding='utf8')
    #result.write(f"checkpoint;type;easy;medium;hard;extra;all\n")
    for step in exp_config["eval_steps"]:
        print("\nInfer\n")
        infer_output_path = f"{args.path_output_file}"
        infer_config = InferConfig(
            model_config_file,
            model_config_args,
            exp_config["logdir"],
            exp_config["eval_section"],
            exp_config["eval_beam_size"],
            infer_output_path,
            step,
            use_heuristic=exp_config["eval_use_heuristic"]
        )
        infer.main2(infer_config, args.data_file)

        # print("\nEval\n")
        # eval_output_path = f"{args.path_output_file}.eval"
        
        # eval_config = EvalConfig(
            # model_config_file,
            # model_config_args,
            # exp_config["logdir"],
            # exp_config["eval_section"],
            # f"{infer_output_path}.infer",
            # eval_output_path
        # )
        # eval.main2(eval_config, args.data_file)

        # res_json = json.load(open(eval_output_path))
        # #print(step, res_json['total_scores']['all']['exact'])
        # #print("res_json ******************************")
        # #print(step, res_json)
        # #print("Total Scores******************************")
        # #print(step, res_json['total_scores'])
        # #print("Easy ******************************")
        # #print(step, {res_json['total_scores']['easy']['count']})
        # print(f"\nResults for dataset {args.data_file}\nPrediction saved in {args.path_output_file}.json and {args.path_output_file}.txt\nGold file is gold_for_{args.path_output_file}.txt\nEvaluation results saved in results_for_{args.path_output_file}.csv\n")
        # print(f"*;count;{res_json['total_scores']['easy']['count']};{res_json['total_scores']['medium']['count']};{res_json['total_scores']['hard']['count']};{res_json['total_scores']['extra']['count']};{res_json['total_scores']['all']['count']}") 
        # print(f"checkpoint;type;easy;medium;hard;extra;all") 
        # print(f"{step};exact match;{res_json['total_scores']['easy']['exact']:.3f};{res_json['total_scores']['medium']['exact']:.3f};{res_json['total_scores']['hard']['exact']:.3f};{res_json['total_scores']['extra']['exact']:.3f};{res_json['total_scores']['all']['exact']:.3f}") 

        # result.write(f"{step};count;{res_json['total_scores']['easy']['count']};{res_json['total_scores']['medium']['count']};{res_json['total_scores']['hard']['count']};{res_json['total_scores']['extra']['count']};{res_json['total_scores']['all']['count']}\n") 
        # result.write(f"{step};exact match;{res_json['total_scores']['easy']['exact']:.3f};{res_json['total_scores']['medium']['exact']:.3f};{res_json['total_scores']['hard']['exact']:.3f};{res_json['total_scores']['extra']['exact']:.3f};{res_json['total_scores']['all']['exact']:.3f}") 
        
        # #Clean version of original .eval file        
        # eval_clean = open(f"clean_eval_for_{args.path_output_file}.csv", "w", encoding='utf8')
        # for per_item in res_json['per_item']:  
            # if per_item['exact'] == 0 or per_item['exact'] == "false": exact = "false" #in original .eval file some appear as 0 others as "false"
            # if per_item['exact'] == 1 or per_item['exact'] == "true": exact = "true" #in original .eval fiel all appear as "true", but I did the same to be standard 
            # eval_clean.write(f"{exact};{per_item['hardness']};{per_item['gold']};{per_item['predicted']}\n")                                   
        # eval_clean.close()
    #result.close()
    print(f"\nDataset {args.data_file}\nPrediction saved in {args.path_output_file}.json (key 'predicted') and {args.path_output_file}.txt (just text)\nGold file is gold_for_{args.path_output_file}.txt\n")
    
    



if __name__ == "__main__":
    main()