|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from abc import ABC, abstractmethod |
|
from typing import List, Optional, Tuple, Union, Dict, Any |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers import AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2ForCausalLM, Qwen2Model |
|
|
|
from .modeling_vision_tower import build_vision_tower |
|
from .modeling_projector import build_vision_projector |
|
from .utils import get_anyres_image_grid_shape, unpad_image, IGNORE_INDEX, IMAGE_TOKEN_INDEX |
|
|
|
|
|
class ValleyConfig(Qwen2Config): |
|
model_type = "valley" |
|
|
|
class ValleyMetaModel: |
|
def __init__(self, config): |
|
super(ValleyMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
if getattr(config, "eagle_vision_tower", None) is not None: |
|
self.vision_tower, self.qwen2vl_vision_tower = build_vision_tower(config, delay_load=False) |
|
else: |
|
self.vision_tower = build_vision_tower(config, delay_load=False) |
|
|
|
if hasattr(config, "mm_projector_type") and not getattr(config, "only_navit", False): |
|
self.mm_projector = build_vision_projector(config) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, "vision_tower", None) |
|
if getattr(self.config, "eagle_vision_tower", None) is not None: |
|
qwen2vl_vision_tower = getattr(self, "qwen2vl_vision_tower", None) |
|
return vision_tower, qwen2vl_vision_tower |
|
else: |
|
return vision_tower |
|
|
|
class ValleyMetaForCausalLM(ABC): |
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def split_by_instance(self, original_list, split_sizes): |
|
start = 0 |
|
sub_lists = [] |
|
for size in split_sizes: |
|
end = start + size |
|
sub_list = original_list[start:end] |
|
sub_lists.append([x.to(self.device) for x in sub_list]) |
|
start = end |
|
return sub_lists |
|
|
|
def encode_images_qwen2vl(self, pixel_values = None, grid_thw = None, split_sizes=None): |
|
_, qwen2vl_vision_tower = self.get_model().get_vision_tower() |
|
qwen2vl_image_features = qwen2vl_vision_tower(pixel_values, grid_thw) |
|
qwen2vl_image_split_sizes = torch.prod(grid_thw[:, 1:3]//2, dim=1) |
|
qwen2vl_image_features = torch.split(qwen2vl_image_features, qwen2vl_image_split_sizes.tolist(), dim=0) |
|
qwen2vl_image_features = self.split_by_instance(qwen2vl_image_features, split_sizes) |
|
return qwen2vl_image_features |
|
|
|
def encode_images(self, images = None, split_sizes = None): |
|
""" |
|
images: (if not anyres) images.shape = [n,3,336,336] , n = number of images + (number of video) * 8 |
|
images: (if anyres) images.shape = [n,3,336,336] , n = number of tiles * number of images |
|
""" |
|
if getattr(self.config, "eagle_vision_tower", None) is not None: |
|
siglip_vision_tower, _ = self.get_model().get_vision_tower() |
|
image_features = siglip_vision_tower(images) |
|
image_features = self.get_model().mm_projector(image_features) |
|
else: |
|
image_features = self.get_model().get_vision_tower()(images) |
|
image_features = self.get_model().mm_projector(image_features) |
|
|
|
if getattr(self.config,'anyres', False) and getattr(self.config, 'max_vision_token', None) is not None: |
|
assert split_sizes is not None |
|
image_features = list(torch.split(image_features, split_sizes, dim=0)) |
|
for i, image_feature in enumerate(image_features): |
|
hidden_dim = image_feature.shape[-1] |
|
image_tokens = image_feature.shape[0]*image_feature.shape[1] |
|
if getattr(self.config, "eagle_vision_tower", None) is not None: |
|
pass |
|
else: |
|
if image_tokens > self.config.max_vision_token: |
|
intput_shape = int((image_feature.shape[1])**0.5) |
|
output_shape = int((self.config.max_vision_token/image_feature.shape[0])**0.5) |
|
image_feature = image_feature.view(image_feature.shape[0],intput_shape, intput_shape, -1).permute(0,3,1,2) |
|
m = nn.AdaptiveAvgPool2d(output_shape) |
|
pooling_feature = m(image_feature).permute(0,2,3,1) |
|
image_features[i] = pooling_feature.view(image_feature.shape[0], -1, hidden_dim) |
|
split_sizes = None |
|
|
|
if getattr(self.config, 'mm_use_im_start_end', False): |
|
raise ValueError('mm_use_im_start is not support') |
|
if split_sizes is not None: |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
|
|
return image_features |
|
|
|
def get_padding_method(self): |
|
right_padding = getattr(self, 'right_padding', None) |
|
|
|
if right_padding is not None: |
|
method = 'right' if right_padding else 'left' |
|
|
|
method = 'right' if self.training else 'left' |
|
|
|
return method |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, |
|
image_sizes, pixel_values, pixel_values_videos, image_grid_thw, video_grid_thw): |
|
|
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: |
|
target_shape = past_key_values[-1][-1].shape[-2] + 1 |
|
attention_mask = torch.cat((attention_mask, torch.ones( |
|
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
)), dim=1) |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
if type(images) is list or images.ndim == 5: |
|
|
|
if not getattr(self.config,'anyres', False): |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
split_sizes = [image.shape[0] for image in images] |
|
|
|
|
|
if getattr(self.config, 'eagle_vision_tower', None) is not None and getattr(self.config, 'only_navit', False): |
|
image_features = None |
|
else: |
|
image_features = self.encode_images(concat_images, split_sizes) |
|
image_features = [x.to(self.device) for x in image_features] |
|
|
|
|
|
if getattr(self.config, 'eagle_vision_tower', None) is not None: |
|
if pixel_values is not None: |
|
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values, image_grid_thw, split_sizes) |
|
elif pixel_values_videos is not None: |
|
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values_videos, video_grid_thw, split_sizes) |
|
else: |
|
qwen2vl_image_features = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
split_sizes = [len(image) for image in images] |
|
|
|
if getattr(self.config, "eagle_vision_tower", None) is not None: |
|
if pixel_values is not None: |
|
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values, image_grid_thw, split_sizes) |
|
elif pixel_values_videos is not None: |
|
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values_videos, video_grid_thw, split_sizes) |
|
else: |
|
qwen2vl_image_features = None |
|
|
|
|
|
if getattr(self.config, 'eagle_vision_tower', None) is not None and getattr(self.config, 'only_navit', False): |
|
image_features = None |
|
else: |
|
image_features = [] |
|
all_concat_images = [] |
|
all_split_sizes = [] |
|
for batch_images in images: |
|
concat_images = torch.cat([image for image in batch_images], dim=0) |
|
split_sizes = [image.shape[0] for image in batch_images] |
|
all_concat_images.append(concat_images) |
|
all_split_sizes.append(split_sizes) |
|
all_image_features = self.encode_images(images=torch.cat(all_concat_images, dim=0), split_sizes=sum(all_split_sizes, [])) |
|
|
|
idx = 0 |
|
for split_sizes in all_split_sizes: |
|
batch_image_features = all_image_features[idx:idx+len(split_sizes)] |
|
idx += len(split_sizes) |
|
if type(batch_image_features[0]) is list: |
|
batch_image_features = [torch.cat(x).to(self.device) for x in batch_image_features] |
|
else: |
|
batch_image_features = [x.view(-1,x.shape[-1]).to(self.device) for x in batch_image_features] |
|
image_features.append(batch_image_features) |
|
|
|
if getattr(self.config, "eagle_vision_tower", None) is not None and getattr(self.config, 'only_navit', False) == False: |
|
|
|
height = width = self.config.num_patches_per_side |
|
new_image_features = [] |
|
for batch_image_features, batch_image_sizes in zip(image_features, image_sizes): |
|
batch_image_features_list = [] |
|
for cur_image_feature, cur_image_size in zip(batch_image_features, batch_image_sizes): |
|
base_image_feature = cur_image_feature[:width*height, :] |
|
image_feature = cur_image_feature[width*height:, :] |
|
if image_feature.shape[0] != 0: |
|
num_patch_width, num_patch_height = get_anyres_image_grid_shape( |
|
cur_image_size, |
|
self.config.grid_pinpoints, |
|
self.config.vit_crop_size |
|
) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, cur_image_size) |
|
input_shape = (image_feature.shape[-2], image_feature.shape[-1]) |
|
subimage_tokens = np.prod(input_shape) |
|
|
|
|
|
max_subimage_tokens = self.config.max_vision_token-width*height |
|
if subimage_tokens > max_subimage_tokens: |
|
aspect_ratio = input_shape[0] / input_shape[1] |
|
output_shape = ( |
|
int((max_subimage_tokens/aspect_ratio)**0.5*aspect_ratio), |
|
int((max_subimage_tokens/aspect_ratio)**0.5) |
|
) |
|
m = nn.AdaptiveAvgPool2d(output_shape) |
|
image_feature = m(image_feature) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = cur_image_feature |
|
batch_image_features_list.append(image_feature) |
|
new_image_features.append(batch_image_features_list) |
|
|
|
image_features = new_image_features |
|
|
|
else: |
|
image_features = self.encode_images(images).to(self.device) |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask.bool())] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask.bool())] |
|
attention_mask = [cur_attention_mask[cur_attention_mask.bool()] for cur_attention_mask in attention_mask] |
|
new_input_embeds = [] |
|
new_labels = [] |
|
new_attention_mask = [] |
|
|
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
cur_batch_image_idx = 0 |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
|
|
|
|
if num_images == 0: |
|
if getattr(self.config, "eagle_vision_tower", None) is not None: |
|
if getattr(self.config, 'only_navit', False): |
|
cur_image_features = qwen2vl_image_features[batch_idx][cur_batch_image_idx] |
|
else: |
|
siglip_feat = image_features[batch_idx][cur_batch_image_idx] |
|
try: |
|
qwen2vl_feat = qwen2vl_image_features[batch_idx][cur_batch_image_idx] |
|
cur_image_features = torch.cat((siglip_feat, qwen2vl_feat), dim=0) |
|
except Exception as e: |
|
print(e) |
|
print("only siglip feature:", siglip_feat.shape) |
|
cur_image_features = siglip_feat |
|
else: |
|
cur_image_features = image_features[batch_idx][cur_batch_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features.squeeze(0)[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
new_attention_mask.append(attention_mask[batch_idx]) |
|
cur_batch_image_idx += 1 |
|
continue |
|
|
|
|
|
cur_input_ids_noim, cur_labels_noim, cur_attention_mask_noim = [], [], [] |
|
cur_labels = labels[batch_idx] |
|
cur_attention_mask = attention_mask[batch_idx] |
|
cur_img_attention_mask = [ |
|
attention_mask[batch_idx][i].item() |
|
for i in torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() |
|
] |
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_attention_mask_noim.append(cur_attention_mask[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = list(torch.split(cur_input_embeds, split_sizes, dim=0)) |
|
|
|
|
|
cur_new_input_embeds, cur_new_labels, cur_new_attention_mask = [], [], [] |
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
cur_new_attention_mask.append(cur_attention_mask_noim[i]) |
|
if i < num_images: |
|
if getattr(self.config, "eagle_vision_tower", None) is not None: |
|
if getattr(self.config, 'only_navit', False): |
|
cur_image_features = qwen2vl_image_features[batch_idx][cur_batch_image_idx] |
|
else: |
|
siglip_feat = image_features[batch_idx][cur_batch_image_idx] |
|
try: |
|
qwen2vl_feat = qwen2vl_image_features[batch_idx][cur_batch_image_idx] |
|
cur_image_features = torch.cat((siglip_feat, qwen2vl_feat), dim=0) |
|
except Exception as e: |
|
print(e) |
|
print("only siglip feature:", siglip_feat.shape) |
|
cur_image_features = siglip_feat |
|
else: |
|
cur_image_features = image_features[batch_idx][cur_batch_image_idx] |
|
cur_batch_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), True, device=cur_attention_mask.device, dtype=cur_attention_mask.dtype)) |
|
|
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
cur_new_attention_mask = torch.cat(cur_new_attention_mask) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
new_attention_mask = [x[:tokenizer_model_max_length] for x in new_attention_mask] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
new_attention_mask_padded = torch.zeros((batch_size, max_len), dtype=new_attention_mask[0].dtype, device=new_attention_mask[0].device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels, cur_attention_mask) in enumerate(zip(new_input_embeds, new_labels, new_attention_mask)): |
|
cur_len = cur_new_embed.shape[0] |
|
if self.get_padding_method() == 'left': |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
new_attention_mask_padded[i, -cur_len:] = cur_attention_mask |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
new_attention_mask_padded[i, :cur_len] = cur_attention_mask |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
new_labels = new_labels_padded if _labels is not None else None |
|
new_attention_mask = new_attention_mask_padded if _attention_mask is not None else None |
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, new_attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
class ValleyQwen2Model(ValleyMetaModel, Qwen2Model): |
|
config_class = ValleyConfig |
|
def __init__(self, config: Qwen2Config): |
|
super(ValleyQwen2Model, self).__init__(config) |
|
|
|
|
|
class ValleyQwen2ForCausalLM(Qwen2ForCausalLM, ValleyMetaForCausalLM): |
|
config_class = ValleyConfig |
|
|
|
def __init__(self, config): |
|
super(Qwen2ForCausalLM, self).__init__(config) |
|
self.model = ValleyQwen2Model(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: CausalLMOutputWithPast, |
|
model_kwargs: Dict[str, Any], |
|
is_encoder_decoder: bool = False, |
|
num_new_tokens: int = 1, |
|
) -> Dict[str, Any]: |
|
new_model_kwargs = super()._update_model_kwargs_for_generation( |
|
outputs, |
|
model_kwargs, |
|
is_encoder_decoder, |
|
num_new_tokens |
|
) |
|
""" |
|
Set model_kwargs["attention_mask"] to the expanded `attention_mask` in |
|
the `prepare_inputs_labels_for_multimodal` function to ensure the |
|
correctness of the generate behavior when `use_cache` is enabled. |
|
""" |
|
if not is_encoder_decoder: |
|
if "attention_mask" in new_model_kwargs: |
|
attention_mask = outputs.attention_mask |
|
new_model_kwargs["attention_mask"] = torch.cat( |
|
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 |
|
) |
|
return new_model_kwargs |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
pixel_values_videos: Optional[torch.FloatTensor] = None, |
|
image_grid_thw: Optional[torch.LongTensor] = None, |
|
video_grid_thw: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
image_sizes, |
|
pixel_values, |
|
pixel_values_videos, |
|
image_grid_thw, |
|
video_grid_thw, |
|
) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss(reduction='mean') |
|
bs = shift_labels.shape[0] |
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = torch.stack([loss_fct(shift_logits[i], shift_labels[i]) for i in range(bs)]) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
res = CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
res.attention_mask = attention_mask |
|
return res |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
"image_sizes": kwargs.get("image_sizes", None), |
|
"pixel_values": kwargs.get("pixel_values", None), |
|
"pixel_values_videos": kwargs.get("pixel_values_videos", None), |
|
"image_grid_thw": kwargs.get("image_grid_thw", None), |
|
"video_grid_thw": kwargs.get("video_grid_thw", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
AutoConfig.register("valley", ValleyConfig) |
|
AutoModelForCausalLM.register(ValleyConfig, ValleyQwen2ForCausalLM) |