Add new SentenceTransformer model
Browse files- README.md +98 -110
- model.safetensors +1 -1
README.md
CHANGED
@@ -230,19 +230,19 @@ model-index:
|
|
230 |
type: mteb/AILA_casedocs
|
231 |
metrics:
|
232 |
- type: cosine_accuracy@1
|
233 |
-
value: 0.
|
234 |
name: Cosine Accuracy@1
|
235 |
- type: cosine_accuracy@3
|
236 |
value: 0.36
|
237 |
name: Cosine Accuracy@3
|
238 |
- type: cosine_accuracy@5
|
239 |
-
value: 0.
|
240 |
name: Cosine Accuracy@5
|
241 |
- type: cosine_accuracy@10
|
242 |
-
value: 0.
|
243 |
name: Cosine Accuracy@10
|
244 |
- type: cosine_precision@1
|
245 |
-
value: 0.
|
246 |
name: Cosine Precision@1
|
247 |
- type: cosine_precision@3
|
248 |
value: 0.2
|
@@ -251,28 +251,28 @@ model-index:
|
|
251 |
value: 0.14
|
252 |
name: Cosine Precision@5
|
253 |
- type: cosine_precision@10
|
254 |
-
value: 0.
|
255 |
name: Cosine Precision@10
|
256 |
- type: cosine_recall@1
|
257 |
-
value: 0.
|
258 |
name: Cosine Recall@1
|
259 |
- type: cosine_recall@3
|
260 |
-
value: 0.
|
261 |
name: Cosine Recall@3
|
262 |
- type: cosine_recall@5
|
263 |
-
value: 0.
|
264 |
name: Cosine Recall@5
|
265 |
- type: cosine_recall@10
|
266 |
-
value: 0.
|
267 |
name: Cosine Recall@10
|
268 |
- type: cosine_ndcg@10
|
269 |
-
value: 0.
|
270 |
name: Cosine Ndcg@10
|
271 |
- type: cosine_mrr@10
|
272 |
-
value: 0.
|
273 |
name: Cosine Mrr@10
|
274 |
- type: cosine_map@100
|
275 |
-
value: 0.
|
276 |
name: Cosine Map@100
|
277 |
- task:
|
278 |
type: information-retrieval
|
@@ -282,49 +282,49 @@ model-index:
|
|
282 |
type: mteb/AILA_statutes
|
283 |
metrics:
|
284 |
- type: cosine_accuracy@1
|
285 |
-
value: 0.
|
286 |
name: Cosine Accuracy@1
|
287 |
- type: cosine_accuracy@3
|
288 |
-
value: 0.
|
289 |
name: Cosine Accuracy@3
|
290 |
- type: cosine_accuracy@5
|
291 |
-
value: 0.
|
292 |
name: Cosine Accuracy@5
|
293 |
- type: cosine_accuracy@10
|
294 |
-
value: 0.
|
295 |
name: Cosine Accuracy@10
|
296 |
- type: cosine_precision@1
|
297 |
-
value: 0.
|
298 |
name: Cosine Precision@1
|
299 |
- type: cosine_precision@3
|
300 |
-
value: 0.
|
301 |
name: Cosine Precision@3
|
302 |
- type: cosine_precision@5
|
303 |
-
value: 0.
|
304 |
name: Cosine Precision@5
|
305 |
- type: cosine_precision@10
|
306 |
-
value: 0.
|
307 |
name: Cosine Precision@10
|
308 |
- type: cosine_recall@1
|
309 |
-
value: 0.
|
310 |
name: Cosine Recall@1
|
311 |
- type: cosine_recall@3
|
312 |
-
value: 0.
|
313 |
name: Cosine Recall@3
|
314 |
- type: cosine_recall@5
|
315 |
-
value: 0.
|
316 |
name: Cosine Recall@5
|
317 |
- type: cosine_recall@10
|
318 |
-
value: 0.
|
319 |
name: Cosine Recall@10
|
320 |
- type: cosine_ndcg@10
|
321 |
-
value: 0.
|
322 |
name: Cosine Ndcg@10
|
323 |
- type: cosine_mrr@10
|
324 |
-
value: 0.
|
325 |
name: Cosine Mrr@10
|
326 |
- type: cosine_map@100
|
327 |
-
value: 0.
|
328 |
name: Cosine Map@100
|
329 |
- task:
|
330 |
type: information-retrieval
|
@@ -334,49 +334,49 @@ model-index:
|
|
334 |
type: mteb/legalbench_consumer_contracts_qa
|
335 |
metrics:
|
336 |
- type: cosine_accuracy@1
|
337 |
-
value: 0.
|
338 |
name: Cosine Accuracy@1
|
339 |
- type: cosine_accuracy@3
|
340 |
-
value: 0.
|
341 |
name: Cosine Accuracy@3
|
342 |
- type: cosine_accuracy@5
|
343 |
-
value: 0.
|
344 |
name: Cosine Accuracy@5
|
345 |
- type: cosine_accuracy@10
|
346 |
-
value: 0.
|
347 |
name: Cosine Accuracy@10
|
348 |
- type: cosine_precision@1
|
349 |
-
value: 0.
|
350 |
name: Cosine Precision@1
|
351 |
- type: cosine_precision@3
|
352 |
-
value: 0.
|
353 |
name: Cosine Precision@3
|
354 |
- type: cosine_precision@5
|
355 |
-
value: 0.
|
356 |
name: Cosine Precision@5
|
357 |
- type: cosine_precision@10
|
358 |
-
value: 0.
|
359 |
name: Cosine Precision@10
|
360 |
- type: cosine_recall@1
|
361 |
-
value: 0.
|
362 |
name: Cosine Recall@1
|
363 |
- type: cosine_recall@3
|
364 |
-
value: 0.
|
365 |
name: Cosine Recall@3
|
366 |
- type: cosine_recall@5
|
367 |
-
value: 0.
|
368 |
name: Cosine Recall@5
|
369 |
- type: cosine_recall@10
|
370 |
-
value: 0.
|
371 |
name: Cosine Recall@10
|
372 |
- type: cosine_ndcg@10
|
373 |
-
value: 0.
|
374 |
name: Cosine Ndcg@10
|
375 |
- type: cosine_mrr@10
|
376 |
-
value: 0.
|
377 |
name: Cosine Mrr@10
|
378 |
- type: cosine_map@100
|
379 |
-
value: 0.
|
380 |
name: Cosine Map@100
|
381 |
- task:
|
382 |
type: information-retrieval
|
@@ -386,49 +386,49 @@ model-index:
|
|
386 |
type: mteb/legalbench_corporate_lobbying
|
387 |
metrics:
|
388 |
- type: cosine_accuracy@1
|
389 |
-
value: 0.
|
390 |
name: Cosine Accuracy@1
|
391 |
- type: cosine_accuracy@3
|
392 |
-
value: 0.
|
393 |
name: Cosine Accuracy@3
|
394 |
- type: cosine_accuracy@5
|
395 |
-
value: 0.
|
396 |
name: Cosine Accuracy@5
|
397 |
- type: cosine_accuracy@10
|
398 |
-
value: 0.
|
399 |
name: Cosine Accuracy@10
|
400 |
- type: cosine_precision@1
|
401 |
-
value: 0.
|
402 |
name: Cosine Precision@1
|
403 |
- type: cosine_precision@3
|
404 |
-
value: 0.
|
405 |
name: Cosine Precision@3
|
406 |
- type: cosine_precision@5
|
407 |
-
value: 0.
|
408 |
name: Cosine Precision@5
|
409 |
- type: cosine_precision@10
|
410 |
-
value: 0.
|
411 |
name: Cosine Precision@10
|
412 |
- type: cosine_recall@1
|
413 |
-
value: 0.
|
414 |
name: Cosine Recall@1
|
415 |
- type: cosine_recall@3
|
416 |
-
value: 0.
|
417 |
name: Cosine Recall@3
|
418 |
- type: cosine_recall@5
|
419 |
-
value: 0.
|
420 |
name: Cosine Recall@5
|
421 |
- type: cosine_recall@10
|
422 |
-
value: 0.
|
423 |
name: Cosine Recall@10
|
424 |
- type: cosine_ndcg@10
|
425 |
-
value: 0.
|
426 |
name: Cosine Ndcg@10
|
427 |
- type: cosine_mrr@10
|
428 |
-
value: 0.
|
429 |
name: Cosine Mrr@10
|
430 |
- type: cosine_map@100
|
431 |
-
value: 0.
|
432 |
name: Cosine Map@100
|
433 |
- task:
|
434 |
type: information-retrieval
|
@@ -438,49 +438,49 @@ model-index:
|
|
438 |
type: mteb/legal_summarization
|
439 |
metrics:
|
440 |
- type: cosine_accuracy@1
|
441 |
-
value: 0.
|
442 |
name: Cosine Accuracy@1
|
443 |
- type: cosine_accuracy@3
|
444 |
-
value: 0.
|
445 |
name: Cosine Accuracy@3
|
446 |
- type: cosine_accuracy@5
|
447 |
-
value: 0.
|
448 |
name: Cosine Accuracy@5
|
449 |
- type: cosine_accuracy@10
|
450 |
-
value: 0.
|
451 |
name: Cosine Accuracy@10
|
452 |
- type: cosine_precision@1
|
453 |
-
value: 0.
|
454 |
name: Cosine Precision@1
|
455 |
- type: cosine_precision@3
|
456 |
-
value: 0.
|
457 |
name: Cosine Precision@3
|
458 |
- type: cosine_precision@5
|
459 |
-
value: 0.
|
460 |
name: Cosine Precision@5
|
461 |
- type: cosine_precision@10
|
462 |
-
value: 0.
|
463 |
name: Cosine Precision@10
|
464 |
- type: cosine_recall@1
|
465 |
-
value: 0.
|
466 |
name: Cosine Recall@1
|
467 |
- type: cosine_recall@3
|
468 |
-
value: 0.
|
469 |
name: Cosine Recall@3
|
470 |
- type: cosine_recall@5
|
471 |
-
value: 0.
|
472 |
name: Cosine Recall@5
|
473 |
- type: cosine_recall@10
|
474 |
-
value: 0.
|
475 |
name: Cosine Recall@10
|
476 |
- type: cosine_ndcg@10
|
477 |
-
value: 0.
|
478 |
name: Cosine Ndcg@10
|
479 |
- type: cosine_mrr@10
|
480 |
-
value: 0.
|
481 |
name: Cosine Mrr@10
|
482 |
- type: cosine_map@100
|
483 |
-
value: 0.
|
484 |
name: Cosine Map@100
|
485 |
---
|
486 |
|
@@ -591,21 +591,21 @@ You can finetune this model on your own dataset.
|
|
591 |
|
592 |
| Metric | mteb/AILA_casedocs | mteb/AILA_statutes | mteb/legalbench_consumer_contracts_qa | mteb/legalbench_corporate_lobbying | mteb/legal_summarization |
|
593 |
|:--------------------|:-------------------|:-------------------|:--------------------------------------|:-----------------------------------|:-------------------------|
|
594 |
-
| cosine_accuracy@1 | 0.
|
595 |
-
| cosine_accuracy@3 | 0.36 | 0.
|
596 |
-
| cosine_accuracy@5 | 0.
|
597 |
-
| cosine_accuracy@10 | 0.
|
598 |
-
| cosine_precision@1 | 0.
|
599 |
-
| cosine_precision@3 | 0.2 | 0.
|
600 |
-
| cosine_precision@5 | 0.14 | 0.
|
601 |
-
| cosine_precision@10 | 0.
|
602 |
-
| cosine_recall@1 | 0.
|
603 |
-
| cosine_recall@3 | 0.
|
604 |
-
| cosine_recall@5 | 0.
|
605 |
-
| cosine_recall@10 | 0.
|
606 |
-
| **cosine_ndcg@10** | **0.
|
607 |
-
| cosine_mrr@10 | 0.
|
608 |
-
| cosine_map@100 | 0.
|
609 |
|
610 |
<!--
|
611 |
## Bias, Risks and Limitations
|
@@ -819,8 +819,8 @@ You can finetune this model on your own dataset.
|
|
819 |
#### Non-Default Hyperparameters
|
820 |
|
821 |
- `eval_strategy`: steps
|
822 |
-
- `per_device_train_batch_size`:
|
823 |
-
- `learning_rate`:
|
824 |
- `num_train_epochs`: 2
|
825 |
- `warmup_ratio`: 0.1
|
826 |
- `fp16`: True
|
@@ -833,14 +833,14 @@ You can finetune this model on your own dataset.
|
|
833 |
- `do_predict`: False
|
834 |
- `eval_strategy`: steps
|
835 |
- `prediction_loss_only`: True
|
836 |
-
- `per_device_train_batch_size`:
|
837 |
- `per_device_eval_batch_size`: 8
|
838 |
- `per_gpu_train_batch_size`: None
|
839 |
- `per_gpu_eval_batch_size`: None
|
840 |
- `gradient_accumulation_steps`: 1
|
841 |
- `eval_accumulation_steps`: None
|
842 |
- `torch_empty_cache_steps`: None
|
843 |
-
- `learning_rate`:
|
844 |
- `weight_decay`: 0.0
|
845 |
- `adam_beta1`: 0.9
|
846 |
- `adam_beta2`: 0.999
|
@@ -946,25 +946,13 @@ You can finetune this model on your own dataset.
|
|
946 |
</details>
|
947 |
|
948 |
### Training Logs
|
949 |
-
| Epoch | Step |
|
950 |
-
|
951 |
-
| 0 | 0 |
|
952 |
-
| 0.
|
953 |
-
| 0.
|
954 |
-
|
|
955 |
-
|
|
956 |
-
| 0.5981 | 500 | 3.0903 | 0.2129 | 0.2158 | 0.6599 | 0.8709 | 0.6078 |
|
957 |
-
| 0.7177 | 600 | - | 0.2283 | 0.2203 | 0.6623 | 0.8674 | 0.6118 |
|
958 |
-
| 0.8373 | 700 | - | 0.2264 | 0.2217 | 0.6643 | 0.8687 | 0.6136 |
|
959 |
-
| 0.9569 | 800 | - | 0.2363 | 0.2198 | 0.6618 | 0.8716 | 0.6113 |
|
960 |
-
| 1.0766 | 900 | - | 0.2448 | 0.2177 | 0.6633 | 0.8728 | 0.6139 |
|
961 |
-
| 1.1962 | 1000 | 2.1076 | 0.2570 | 0.2204 | 0.6634 | 0.8730 | 0.6111 |
|
962 |
-
| 1.3158 | 1100 | - | 0.2589 | 0.2214 | 0.6655 | 0.8726 | 0.6124 |
|
963 |
-
| 1.4354 | 1200 | - | 0.2572 | 0.2213 | 0.6648 | 0.8691 | 0.6101 |
|
964 |
-
| 1.5550 | 1300 | - | 0.2552 | 0.2186 | 0.6644 | 0.8685 | 0.6096 |
|
965 |
-
| 1.6746 | 1400 | - | 0.2553 | 0.2198 | 0.6634 | 0.8673 | 0.6098 |
|
966 |
-
| 1.7943 | 1500 | 2.2031 | 0.2554 | 0.2205 | 0.6629 | 0.8684 | 0.6081 |
|
967 |
-
| 1.9139 | 1600 | - | 0.2554 | 0.2180 | 0.6630 | 0.8685 | 0.6075 |
|
968 |
|
969 |
|
970 |
### Framework Versions
|
|
|
230 |
type: mteb/AILA_casedocs
|
231 |
metrics:
|
232 |
- type: cosine_accuracy@1
|
233 |
+
value: 0.26
|
234 |
name: Cosine Accuracy@1
|
235 |
- type: cosine_accuracy@3
|
236 |
value: 0.36
|
237 |
name: Cosine Accuracy@3
|
238 |
- type: cosine_accuracy@5
|
239 |
+
value: 0.38
|
240 |
name: Cosine Accuracy@5
|
241 |
- type: cosine_accuracy@10
|
242 |
+
value: 0.58
|
243 |
name: Cosine Accuracy@10
|
244 |
- type: cosine_precision@1
|
245 |
+
value: 0.26
|
246 |
name: Cosine Precision@1
|
247 |
- type: cosine_precision@3
|
248 |
value: 0.2
|
|
|
251 |
value: 0.14
|
252 |
name: Cosine Precision@5
|
253 |
- type: cosine_precision@10
|
254 |
+
value: 0.10599999999999998
|
255 |
name: Cosine Precision@10
|
256 |
- type: cosine_recall@1
|
257 |
+
value: 0.08253846153846153
|
258 |
name: Cosine Recall@1
|
259 |
- type: cosine_recall@3
|
260 |
+
value: 0.183986013986014
|
261 |
name: Cosine Recall@3
|
262 |
- type: cosine_recall@5
|
263 |
+
value: 0.21322843822843823
|
264 |
name: Cosine Recall@5
|
265 |
- type: cosine_recall@10
|
266 |
+
value: 0.30445687645687647
|
267 |
name: Cosine Recall@10
|
268 |
- type: cosine_ndcg@10
|
269 |
+
value: 0.261956835808035
|
270 |
name: Cosine Ndcg@10
|
271 |
- type: cosine_mrr@10
|
272 |
+
value: 0.3361349206349206
|
273 |
name: Cosine Mrr@10
|
274 |
- type: cosine_map@100
|
275 |
+
value: 0.23084417119066455
|
276 |
name: Cosine Map@100
|
277 |
- task:
|
278 |
type: information-retrieval
|
|
|
282 |
type: mteb/AILA_statutes
|
283 |
metrics:
|
284 |
- type: cosine_accuracy@1
|
285 |
+
value: 0.26
|
286 |
name: Cosine Accuracy@1
|
287 |
- type: cosine_accuracy@3
|
288 |
+
value: 0.44
|
289 |
name: Cosine Accuracy@3
|
290 |
- type: cosine_accuracy@5
|
291 |
+
value: 0.54
|
292 |
name: Cosine Accuracy@5
|
293 |
- type: cosine_accuracy@10
|
294 |
+
value: 0.7
|
295 |
name: Cosine Accuracy@10
|
296 |
- type: cosine_precision@1
|
297 |
+
value: 0.26
|
298 |
name: Cosine Precision@1
|
299 |
- type: cosine_precision@3
|
300 |
+
value: 0.16666666666666669
|
301 |
name: Cosine Precision@3
|
302 |
- type: cosine_precision@5
|
303 |
+
value: 0.14400000000000002
|
304 |
name: Cosine Precision@5
|
305 |
- type: cosine_precision@10
|
306 |
+
value: 0.10999999999999999
|
307 |
name: Cosine Precision@10
|
308 |
- type: cosine_recall@1
|
309 |
+
value: 0.071
|
310 |
name: Cosine Recall@1
|
311 |
- type: cosine_recall@3
|
312 |
+
value: 0.129
|
313 |
name: Cosine Recall@3
|
314 |
- type: cosine_recall@5
|
315 |
+
value: 0.17700000000000002
|
316 |
name: Cosine Recall@5
|
317 |
- type: cosine_recall@10
|
318 |
+
value: 0.2643333333333333
|
319 |
name: Cosine Recall@10
|
320 |
- type: cosine_ndcg@10
|
321 |
+
value: 0.23332317287231785
|
322 |
name: Cosine Ndcg@10
|
323 |
- type: cosine_mrr@10
|
324 |
+
value: 0.37441269841269836
|
325 |
name: Cosine Mrr@10
|
326 |
- type: cosine_map@100
|
327 |
+
value: 0.2043241006581302
|
328 |
name: Cosine Map@100
|
329 |
- task:
|
330 |
type: information-retrieval
|
|
|
334 |
type: mteb/legalbench_consumer_contracts_qa
|
335 |
metrics:
|
336 |
- type: cosine_accuracy@1
|
337 |
+
value: 0.45202020202020204
|
338 |
name: Cosine Accuracy@1
|
339 |
- type: cosine_accuracy@3
|
340 |
+
value: 0.6868686868686869
|
341 |
name: Cosine Accuracy@3
|
342 |
- type: cosine_accuracy@5
|
343 |
+
value: 0.7878787878787878
|
344 |
name: Cosine Accuracy@5
|
345 |
- type: cosine_accuracy@10
|
346 |
+
value: 0.8737373737373737
|
347 |
name: Cosine Accuracy@10
|
348 |
- type: cosine_precision@1
|
349 |
+
value: 0.45202020202020204
|
350 |
name: Cosine Precision@1
|
351 |
- type: cosine_precision@3
|
352 |
+
value: 0.22895622895622894
|
353 |
name: Cosine Precision@3
|
354 |
- type: cosine_precision@5
|
355 |
+
value: 0.15757575757575756
|
356 |
name: Cosine Precision@5
|
357 |
- type: cosine_precision@10
|
358 |
+
value: 0.08737373737373735
|
359 |
name: Cosine Precision@10
|
360 |
- type: cosine_recall@1
|
361 |
+
value: 0.45202020202020204
|
362 |
name: Cosine Recall@1
|
363 |
- type: cosine_recall@3
|
364 |
+
value: 0.6868686868686869
|
365 |
name: Cosine Recall@3
|
366 |
- type: cosine_recall@5
|
367 |
+
value: 0.7878787878787878
|
368 |
name: Cosine Recall@5
|
369 |
- type: cosine_recall@10
|
370 |
+
value: 0.8737373737373737
|
371 |
name: Cosine Recall@10
|
372 |
- type: cosine_ndcg@10
|
373 |
+
value: 0.660855212722782
|
374 |
name: Cosine Ndcg@10
|
375 |
- type: cosine_mrr@10
|
376 |
+
value: 0.5928561407728073
|
377 |
name: Cosine Mrr@10
|
378 |
- type: cosine_map@100
|
379 |
+
value: 0.5987644318492056
|
380 |
name: Cosine Map@100
|
381 |
- task:
|
382 |
type: information-retrieval
|
|
|
386 |
type: mteb/legalbench_corporate_lobbying
|
387 |
metrics:
|
388 |
- type: cosine_accuracy@1
|
389 |
+
value: 0.7705882352941177
|
390 |
name: Cosine Accuracy@1
|
391 |
- type: cosine_accuracy@3
|
392 |
+
value: 0.9088235294117647
|
393 |
name: Cosine Accuracy@3
|
394 |
- type: cosine_accuracy@5
|
395 |
+
value: 0.9382352941176471
|
396 |
name: Cosine Accuracy@5
|
397 |
- type: cosine_accuracy@10
|
398 |
+
value: 0.9705882352941176
|
399 |
name: Cosine Accuracy@10
|
400 |
- type: cosine_precision@1
|
401 |
+
value: 0.7705882352941177
|
402 |
name: Cosine Precision@1
|
403 |
- type: cosine_precision@3
|
404 |
+
value: 0.3029411764705882
|
405 |
name: Cosine Precision@3
|
406 |
- type: cosine_precision@5
|
407 |
+
value: 0.18764705882352936
|
408 |
name: Cosine Precision@5
|
409 |
- type: cosine_precision@10
|
410 |
+
value: 0.09705882352941174
|
411 |
name: Cosine Precision@10
|
412 |
- type: cosine_recall@1
|
413 |
+
value: 0.7705882352941177
|
414 |
name: Cosine Recall@1
|
415 |
- type: cosine_recall@3
|
416 |
+
value: 0.9088235294117647
|
417 |
name: Cosine Recall@3
|
418 |
- type: cosine_recall@5
|
419 |
+
value: 0.9382352941176471
|
420 |
name: Cosine Recall@5
|
421 |
- type: cosine_recall@10
|
422 |
+
value: 0.9705882352941176
|
423 |
name: Cosine Recall@10
|
424 |
- type: cosine_ndcg@10
|
425 |
+
value: 0.877258980240739
|
426 |
name: Cosine Ndcg@10
|
427 |
- type: cosine_mrr@10
|
428 |
+
value: 0.8466806722689075
|
429 |
name: Cosine Mrr@10
|
430 |
- type: cosine_map@100
|
431 |
+
value: 0.8476651359451062
|
432 |
name: Cosine Map@100
|
433 |
- task:
|
434 |
type: information-retrieval
|
|
|
438 |
type: mteb/legal_summarization
|
439 |
metrics:
|
440 |
- type: cosine_accuracy@1
|
441 |
+
value: 0.4894366197183099
|
442 |
name: Cosine Accuracy@1
|
443 |
- type: cosine_accuracy@3
|
444 |
+
value: 0.6408450704225352
|
445 |
name: Cosine Accuracy@3
|
446 |
- type: cosine_accuracy@5
|
447 |
+
value: 0.7147887323943662
|
448 |
name: Cosine Accuracy@5
|
449 |
- type: cosine_accuracy@10
|
450 |
+
value: 0.7816901408450704
|
451 |
name: Cosine Accuracy@10
|
452 |
- type: cosine_precision@1
|
453 |
+
value: 0.4894366197183099
|
454 |
name: Cosine Precision@1
|
455 |
- type: cosine_precision@3
|
456 |
+
value: 0.23591549295774647
|
457 |
name: Cosine Precision@3
|
458 |
- type: cosine_precision@5
|
459 |
+
value: 0.16619718309859152
|
460 |
name: Cosine Precision@5
|
461 |
- type: cosine_precision@10
|
462 |
+
value: 0.09753521126760564
|
463 |
name: Cosine Precision@10
|
464 |
- type: cosine_recall@1
|
465 |
+
value: 0.4368868514114993
|
466 |
name: Cosine Recall@1
|
467 |
- type: cosine_recall@3
|
468 |
+
value: 0.5753959362234009
|
469 |
name: Cosine Recall@3
|
470 |
- type: cosine_recall@5
|
471 |
+
value: 0.6440091305408207
|
472 |
name: Cosine Recall@5
|
473 |
- type: cosine_recall@10
|
474 |
+
value: 0.7159090909090909
|
475 |
name: Cosine Recall@10
|
476 |
- type: cosine_ndcg@10
|
477 |
+
value: 0.596027060399293
|
478 |
name: Cosine Ndcg@10
|
479 |
- type: cosine_mrr@10
|
480 |
+
value: 0.5833137715179968
|
481 |
name: Cosine Mrr@10
|
482 |
- type: cosine_map@100
|
483 |
+
value: 0.5567992166327345
|
484 |
name: Cosine Map@100
|
485 |
---
|
486 |
|
|
|
591 |
|
592 |
| Metric | mteb/AILA_casedocs | mteb/AILA_statutes | mteb/legalbench_consumer_contracts_qa | mteb/legalbench_corporate_lobbying | mteb/legal_summarization |
|
593 |
|:--------------------|:-------------------|:-------------------|:--------------------------------------|:-----------------------------------|:-------------------------|
|
594 |
+
| cosine_accuracy@1 | 0.26 | 0.26 | 0.452 | 0.7706 | 0.4894 |
|
595 |
+
| cosine_accuracy@3 | 0.36 | 0.44 | 0.6869 | 0.9088 | 0.6408 |
|
596 |
+
| cosine_accuracy@5 | 0.38 | 0.54 | 0.7879 | 0.9382 | 0.7148 |
|
597 |
+
| cosine_accuracy@10 | 0.58 | 0.7 | 0.8737 | 0.9706 | 0.7817 |
|
598 |
+
| cosine_precision@1 | 0.26 | 0.26 | 0.452 | 0.7706 | 0.4894 |
|
599 |
+
| cosine_precision@3 | 0.2 | 0.1667 | 0.229 | 0.3029 | 0.2359 |
|
600 |
+
| cosine_precision@5 | 0.14 | 0.144 | 0.1576 | 0.1876 | 0.1662 |
|
601 |
+
| cosine_precision@10 | 0.106 | 0.11 | 0.0874 | 0.0971 | 0.0975 |
|
602 |
+
| cosine_recall@1 | 0.0825 | 0.071 | 0.452 | 0.7706 | 0.4369 |
|
603 |
+
| cosine_recall@3 | 0.184 | 0.129 | 0.6869 | 0.9088 | 0.5754 |
|
604 |
+
| cosine_recall@5 | 0.2132 | 0.177 | 0.7879 | 0.9382 | 0.644 |
|
605 |
+
| cosine_recall@10 | 0.3045 | 0.2643 | 0.8737 | 0.9706 | 0.7159 |
|
606 |
+
| **cosine_ndcg@10** | **0.262** | **0.2333** | **0.6609** | **0.8773** | **0.596** |
|
607 |
+
| cosine_mrr@10 | 0.3361 | 0.3744 | 0.5929 | 0.8467 | 0.5833 |
|
608 |
+
| cosine_map@100 | 0.2308 | 0.2043 | 0.5988 | 0.8477 | 0.5568 |
|
609 |
|
610 |
<!--
|
611 |
## Bias, Risks and Limitations
|
|
|
819 |
#### Non-Default Hyperparameters
|
820 |
|
821 |
- `eval_strategy`: steps
|
822 |
+
- `per_device_train_batch_size`: 256
|
823 |
+
- `learning_rate`: 5e-06
|
824 |
- `num_train_epochs`: 2
|
825 |
- `warmup_ratio`: 0.1
|
826 |
- `fp16`: True
|
|
|
833 |
- `do_predict`: False
|
834 |
- `eval_strategy`: steps
|
835 |
- `prediction_loss_only`: True
|
836 |
+
- `per_device_train_batch_size`: 256
|
837 |
- `per_device_eval_batch_size`: 8
|
838 |
- `per_gpu_train_batch_size`: None
|
839 |
- `per_gpu_eval_batch_size`: None
|
840 |
- `gradient_accumulation_steps`: 1
|
841 |
- `eval_accumulation_steps`: None
|
842 |
- `torch_empty_cache_steps`: None
|
843 |
+
- `learning_rate`: 5e-06
|
844 |
- `weight_decay`: 0.0
|
845 |
- `adam_beta1`: 0.9
|
846 |
- `adam_beta2`: 0.999
|
|
|
946 |
</details>
|
947 |
|
948 |
### Training Logs
|
949 |
+
| Epoch | Step | mteb/AILA_casedocs_cosine_ndcg@10 | mteb/AILA_statutes_cosine_ndcg@10 | mteb/legalbench_consumer_contracts_qa_cosine_ndcg@10 | mteb/legalbench_corporate_lobbying_cosine_ndcg@10 | mteb/legal_summarization_cosine_ndcg@10 |
|
950 |
+
|:------:|:----:|:---------------------------------:|:---------------------------------:|:----------------------------------------------------:|:-------------------------------------------------:|:---------------------------------------:|
|
951 |
+
| 0 | 0 | 0.1972 | 0.2052 | 0.6560 | 0.8641 | 0.5900 |
|
952 |
+
| 0.4717 | 100 | 0.2409 | 0.2173 | 0.6624 | 0.8766 | 0.6055 |
|
953 |
+
| 0.9434 | 200 | 0.2489 | 0.2207 | 0.6553 | 0.8725 | 0.5998 |
|
954 |
+
| 1.4151 | 300 | 0.2619 | 0.2355 | 0.6641 | 0.8790 | 0.5992 |
|
955 |
+
| 1.8868 | 400 | 0.2620 | 0.2333 | 0.6609 | 0.8773 | 0.5960 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
956 |
|
957 |
|
958 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:377c6c0f2f16b01e67bae8bf3d7ec4fa58444f4f55ca3465753fcaf6722e4bd4
|
3 |
size 90864192
|