Add model trained on 8 emotions
Browse files- README.md +91 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: distilbert-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: emotion-analysis-8-categories
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# emotion-analysis-8-categories
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1962
|
20 |
+
- F1 Macro: 0.6719
|
21 |
+
- Precision Macro: 0.7346
|
22 |
+
- Recall Macro: 0.6242
|
23 |
+
- F1 Joy: 0.8597
|
24 |
+
- Precision Joy: 0.8918
|
25 |
+
- Recall Joy: 0.8299
|
26 |
+
- F1 Trust: 0.7831
|
27 |
+
- Precision Trust: 0.7855
|
28 |
+
- Recall Trust: 0.7808
|
29 |
+
- F1 Fear: 0.6737
|
30 |
+
- Precision Fear: 0.6957
|
31 |
+
- Recall Fear: 0.6531
|
32 |
+
- F1 Surprise: 0.5475
|
33 |
+
- Precision Surprise: 0.6968
|
34 |
+
- Recall Surprise: 0.4509
|
35 |
+
- F1 Sadness: 0.6627
|
36 |
+
- Precision Sadness: 0.7585
|
37 |
+
- Recall Sadness: 0.5884
|
38 |
+
- F1 Disgust: 0.5613
|
39 |
+
- Precision Disgust: 0.6485
|
40 |
+
- Recall Disgust: 0.4948
|
41 |
+
- F1 Anger: 0.6058
|
42 |
+
- Precision Anger: 0.6950
|
43 |
+
- Recall Anger: 0.5369
|
44 |
+
- F1 Anticipation: 0.6813
|
45 |
+
- Precision Anticipation: 0.7050
|
46 |
+
- Recall Anticipation: 0.6593
|
47 |
+
|
48 |
+
## Model description
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Intended uses & limitations
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Training and evaluation data
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training procedure
|
61 |
+
|
62 |
+
### Training hyperparameters
|
63 |
+
|
64 |
+
The following hyperparameters were used during training:
|
65 |
+
- learning_rate: 2e-05
|
66 |
+
- train_batch_size: 16
|
67 |
+
- eval_batch_size: 64
|
68 |
+
- seed: 42
|
69 |
+
- gradient_accumulation_steps: 2
|
70 |
+
- total_train_batch_size: 32
|
71 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- num_epochs: 3
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision Macro | Recall Macro | F1 Joy | Precision Joy | Recall Joy | F1 Trust | Precision Trust | Recall Trust | F1 Fear | Precision Fear | Recall Fear | F1 Surprise | Precision Surprise | Recall Surprise | F1 Sadness | Precision Sadness | Recall Sadness | F1 Disgust | Precision Disgust | Recall Disgust | F1 Anger | Precision Anger | Recall Anger | F1 Anticipation | Precision Anticipation | Recall Anticipation |
|
78 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------------:|:------------:|:------:|:-------------:|:----------:|:--------:|:---------------:|:------------:|:-------:|:--------------:|:-----------:|:-----------:|:------------------:|:---------------:|:----------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:--------:|:---------------:|:------------:|:---------------:|:----------------------:|:-------------------:|
|
79 |
+
| 0.2317 | 0.5230 | 500 | 0.2208 | 0.5067 | 0.6799 | 0.4299 | 0.8305 | 0.9098 | 0.7640 | 0.7647 | 0.8 | 0.7323 | 0.0 | 0.0 | 0.0 | 0.3661 | 0.7851 | 0.2387 | 0.6069 | 0.7276 | 0.5205 | 0.2965 | 0.7474 | 0.1849 | 0.5658 | 0.6824 | 0.4833 | 0.6228 | 0.7872 | 0.5153 |
|
80 |
+
| 0.2054 | 1.0460 | 1000 | 0.1998 | 0.6436 | 0.7371 | 0.5768 | 0.8480 | 0.8991 | 0.8024 | 0.7686 | 0.8242 | 0.7200 | 0.5909 | 0.7324 | 0.4952 | 0.4663 | 0.6730 | 0.3568 | 0.6476 | 0.7299 | 0.5821 | 0.5434 | 0.5987 | 0.4974 | 0.6084 | 0.7059 | 0.5345 | 0.6756 | 0.7338 | 0.6260 |
|
81 |
+
| 0.1845 | 1.5690 | 1500 | 0.1958 | 0.6619 | 0.7507 | 0.5990 | 0.8444 | 0.8964 | 0.7980 | 0.7738 | 0.7977 | 0.7512 | 0.6851 | 0.8158 | 0.5905 | 0.4928 | 0.6861 | 0.3844 | 0.6592 | 0.7204 | 0.6077 | 0.5 | 0.65 | 0.4062 | 0.6509 | 0.6917 | 0.6147 | 0.6893 | 0.7478 | 0.6393 |
|
82 |
+
| 0.1772 | 2.0921 | 2000 | 0.1937 | 0.6690 | 0.7468 | 0.6086 | 0.8499 | 0.8925 | 0.8112 | 0.7784 | 0.8305 | 0.7323 | 0.6809 | 0.7711 | 0.6095 | 0.5285 | 0.6567 | 0.4422 | 0.6611 | 0.7284 | 0.6051 | 0.5303 | 0.6341 | 0.4557 | 0.6480 | 0.6797 | 0.6192 | 0.6746 | 0.7814 | 0.5935 |
|
83 |
+
| 0.1645 | 2.6151 | 2500 | 0.1941 | 0.6740 | 0.7413 | 0.6218 | 0.8472 | 0.9 | 0.8002 | 0.7839 | 0.8 | 0.7685 | 0.6772 | 0.7619 | 0.6095 | 0.5392 | 0.6729 | 0.4497 | 0.6695 | 0.7339 | 0.6154 | 0.5360 | 0.6506 | 0.4557 | 0.6499 | 0.7039 | 0.6036 | 0.6888 | 0.7068 | 0.6718 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.48.3
|
89 |
+
- Pytorch 2.5.1+cu124
|
90 |
+
- Datasets 3.3.2
|
91 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 267851024
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76a66ded82e03425c305eba6d406cea3fadc551f8e6d777e0f9473f6db96bb87
|
3 |
size 267851024
|