bulpara commited on
Commit
3721a7e
·
verified ·
1 Parent(s): d41d660

Add model trained on 8 emotions

Browse files
Files changed (2) hide show
  1. README.md +91 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: emotion-analysis-8-categories
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # emotion-analysis-8-categories
16
+
17
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1962
20
+ - F1 Macro: 0.6719
21
+ - Precision Macro: 0.7346
22
+ - Recall Macro: 0.6242
23
+ - F1 Joy: 0.8597
24
+ - Precision Joy: 0.8918
25
+ - Recall Joy: 0.8299
26
+ - F1 Trust: 0.7831
27
+ - Precision Trust: 0.7855
28
+ - Recall Trust: 0.7808
29
+ - F1 Fear: 0.6737
30
+ - Precision Fear: 0.6957
31
+ - Recall Fear: 0.6531
32
+ - F1 Surprise: 0.5475
33
+ - Precision Surprise: 0.6968
34
+ - Recall Surprise: 0.4509
35
+ - F1 Sadness: 0.6627
36
+ - Precision Sadness: 0.7585
37
+ - Recall Sadness: 0.5884
38
+ - F1 Disgust: 0.5613
39
+ - Precision Disgust: 0.6485
40
+ - Recall Disgust: 0.4948
41
+ - F1 Anger: 0.6058
42
+ - Precision Anger: 0.6950
43
+ - Recall Anger: 0.5369
44
+ - F1 Anticipation: 0.6813
45
+ - Precision Anticipation: 0.7050
46
+ - Recall Anticipation: 0.6593
47
+
48
+ ## Model description
49
+
50
+ More information needed
51
+
52
+ ## Intended uses & limitations
53
+
54
+ More information needed
55
+
56
+ ## Training and evaluation data
57
+
58
+ More information needed
59
+
60
+ ## Training procedure
61
+
62
+ ### Training hyperparameters
63
+
64
+ The following hyperparameters were used during training:
65
+ - learning_rate: 2e-05
66
+ - train_batch_size: 16
67
+ - eval_batch_size: 64
68
+ - seed: 42
69
+ - gradient_accumulation_steps: 2
70
+ - total_train_batch_size: 32
71
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision Macro | Recall Macro | F1 Joy | Precision Joy | Recall Joy | F1 Trust | Precision Trust | Recall Trust | F1 Fear | Precision Fear | Recall Fear | F1 Surprise | Precision Surprise | Recall Surprise | F1 Sadness | Precision Sadness | Recall Sadness | F1 Disgust | Precision Disgust | Recall Disgust | F1 Anger | Precision Anger | Recall Anger | F1 Anticipation | Precision Anticipation | Recall Anticipation |
78
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------------:|:------------:|:------:|:-------------:|:----------:|:--------:|:---------------:|:------------:|:-------:|:--------------:|:-----------:|:-----------:|:------------------:|:---------------:|:----------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:--------:|:---------------:|:------------:|:---------------:|:----------------------:|:-------------------:|
79
+ | 0.2317 | 0.5230 | 500 | 0.2208 | 0.5067 | 0.6799 | 0.4299 | 0.8305 | 0.9098 | 0.7640 | 0.7647 | 0.8 | 0.7323 | 0.0 | 0.0 | 0.0 | 0.3661 | 0.7851 | 0.2387 | 0.6069 | 0.7276 | 0.5205 | 0.2965 | 0.7474 | 0.1849 | 0.5658 | 0.6824 | 0.4833 | 0.6228 | 0.7872 | 0.5153 |
80
+ | 0.2054 | 1.0460 | 1000 | 0.1998 | 0.6436 | 0.7371 | 0.5768 | 0.8480 | 0.8991 | 0.8024 | 0.7686 | 0.8242 | 0.7200 | 0.5909 | 0.7324 | 0.4952 | 0.4663 | 0.6730 | 0.3568 | 0.6476 | 0.7299 | 0.5821 | 0.5434 | 0.5987 | 0.4974 | 0.6084 | 0.7059 | 0.5345 | 0.6756 | 0.7338 | 0.6260 |
81
+ | 0.1845 | 1.5690 | 1500 | 0.1958 | 0.6619 | 0.7507 | 0.5990 | 0.8444 | 0.8964 | 0.7980 | 0.7738 | 0.7977 | 0.7512 | 0.6851 | 0.8158 | 0.5905 | 0.4928 | 0.6861 | 0.3844 | 0.6592 | 0.7204 | 0.6077 | 0.5 | 0.65 | 0.4062 | 0.6509 | 0.6917 | 0.6147 | 0.6893 | 0.7478 | 0.6393 |
82
+ | 0.1772 | 2.0921 | 2000 | 0.1937 | 0.6690 | 0.7468 | 0.6086 | 0.8499 | 0.8925 | 0.8112 | 0.7784 | 0.8305 | 0.7323 | 0.6809 | 0.7711 | 0.6095 | 0.5285 | 0.6567 | 0.4422 | 0.6611 | 0.7284 | 0.6051 | 0.5303 | 0.6341 | 0.4557 | 0.6480 | 0.6797 | 0.6192 | 0.6746 | 0.7814 | 0.5935 |
83
+ | 0.1645 | 2.6151 | 2500 | 0.1941 | 0.6740 | 0.7413 | 0.6218 | 0.8472 | 0.9 | 0.8002 | 0.7839 | 0.8 | 0.7685 | 0.6772 | 0.7619 | 0.6095 | 0.5392 | 0.6729 | 0.4497 | 0.6695 | 0.7339 | 0.6154 | 0.5360 | 0.6506 | 0.4557 | 0.6499 | 0.7039 | 0.6036 | 0.6888 | 0.7068 | 0.6718 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.48.3
89
+ - Pytorch 2.5.1+cu124
90
+ - Datasets 3.3.2
91
+ - Tokenizers 0.21.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b513cc009f72435b65529a6864048c3277abe711e4ed65966c2571bb2c977d06
3
  size 267851024
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a66ded82e03425c305eba6d406cea3fadc551f8e6d777e0f9473f6db96bb87
3
  size 267851024