--- license: openrail datasets: - bugdaryan/spider-natsql-wikisql-instruct language: - en tags: - cod --- # Wizard Coder SQL-Generation Model ## Overview - **Model Name**: WizardCoderSQL-15B-V1.0 - **Repository**: [GitHub Repository](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder) - **License**: [OpenRAIL-M](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) - **Fine-Tuned Model Name**: WizardCoderSQL-15B-V1.0 - **Fine-Tuned Dataset**: [bugdaryan/spider-natsql-wikisql-instruct](https://huggingface.co/dataset/bugdaryan/spider-natsql-wikisql-instruct) ## Description This is a fine-tuned version of the Wizard Coder 15B model specifically designed for SQL generation tasks. The model has been fine-tuned on the [bugdaryan/spider-natsql-wikisql-instruct](https://huggingface.co/dataset/bugdaryan/spider-natsql-wikisql-instruct) dataset to empower it with the ability to generate SQL queries based on natural language instructions. ## Model Details - **Base Model**: Wizard Coder 15B - **Fine-Tuned Model Name**: WizardCoderSQL-15B-V1.0 - **Fine-Tuning Parameters**: - QLoRA Parameters: - LoRA Attention Dimension (lora_r): 64 - LoRA Alpha Parameter (lora_alpha): 16 - LoRA Dropout Probability (lora_dropout): 0.1 - bitsandbytes Parameters: - Use 4-bit Precision Base Model (use_4bit): True - Compute Dtype for 4-bit Base Models (bnb_4bit_compute_dtype): float16 - Quantization Type (bnb_4bit_quant_type): nf4 - Activate Nested Quantization (use_nested_quant): False - TrainingArguments Parameters: - Number of Training Epochs (num_train_epochs): 1 - Enable FP16/BF16 Training (fp16/bf16): False/True - Batch Size per GPU for Training (per_device_train_batch_size): 48 - Batch Size per GPU for Evaluation (per_device_eval_batch_size): 4 - Gradient Accumulation Steps (gradient_accumulation_steps): 1 - Enable Gradient Checkpointing (gradient_checkpointing): True - Maximum Gradient Norm (max_grad_norm): 0.3 - Initial Learning Rate (learning_rate): 2e-4 - Weight Decay (weight_decay): 0.001 - Optimizer (optim): paged_adamw_32bit - Learning Rate Scheduler Type (lr_scheduler_type): cosine - Maximum Training Steps (max_steps): -1 - Warmup Ratio (warmup_ratio): 0.03 - Group Sequences into Batches with Same Length (group_by_length): True - Save Checkpoint Every X Update Steps (save_steps): 0 - Log Every X Update Steps (logging_steps): 25 - SFT Parameters: - Maximum Sequence Length (max_seq_length): 500 ## Performance - **Fine-Tuned Model Metrics**: (Provide any relevant evaluation metrics if available) ## Dataset - **Fine-Tuned Dataset**: [bugdaryan/spider-natsql-wikisql-instruct](https://huggingface.co/dataset/bugdaryan/spider-natsql-wikisql-instruct) - **Dataset Description**: This dataset contains natural language instructions paired with SQL queries. It serves as the training data for fine-tuning the Wizard Coder model for SQL generation tasks. ## Model Card Information - **Maintainer**: Spartak Bughdaryan - **Contact**: bugdaryan@gmail.com - **Date Created**: September 15, 2023 - **Last Updated**: September 15, 2023 ## Usage To use this fine-tuned model for SQL generation tasks, you can load it using the Hugging Face Transformers library in Python. Here's an example of how to use it: ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, pipeline ) import torch model_name = 'bugdaryan/WizardCoderSQL-15B-V1.0' model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(model_name) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer) tables = "CREATE TABLE sales ( sale_id number PRIMARY KEY, product_id number, customer_id number, salesperson_id number, sale_date DATE, quantity number, FOREIGN KEY (product_id) REFERENCES products(product_id), FOREIGN KEY (customer_id) REFERENCES customers(customer_id), FOREIGN KEY (salesperson_id) REFERENCES salespeople(salesperson_id)); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number, FOREIGN KEY (product_id) REFERENCES products(product_id)); CREATE TABLE customers ( customer_id number PRIMARY KEY, name text, address text ); CREATE TABLE salespeople ( salesperson_id number PRIMARY KEY, name text, region text ); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number );" question = 'Find the salesperson who made the most sales.' prompt = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Convert text to SQLite query: {question} {tables} ### Response:" ans = pipe(prompt, max_new_tokens=200) print(ans[0]['generated_text']) ```