Upload model
Browse files- README.md +199 -0
- config.json +25 -0
- model.safetensors +3 -0
- modeling_IQtransformer.py +281 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"transformerModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "modeling_IQtransformer.transformerConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_IQtransformer.transformerModel"
|
8 |
+
},
|
9 |
+
"dropout": 0.1,
|
10 |
+
"ffn_num_hiddens": 64,
|
11 |
+
"ffn_num_input": 32,
|
12 |
+
"key_size": 32,
|
13 |
+
"model_type": "IQsignal_transformer",
|
14 |
+
"norm_shape": [
|
15 |
+
32
|
16 |
+
],
|
17 |
+
"num_heads": 4,
|
18 |
+
"num_hiddens": 32,
|
19 |
+
"num_layers": 1,
|
20 |
+
"query_size": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.2",
|
23 |
+
"value_size": 32,
|
24 |
+
"vocab_size": 32
|
25 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7072cbbabdab8bb637ea49fd5e0970f57758ac3c4501b3ce062b032cd97b813
|
3 |
+
size 44340
|
modeling_IQtransformer.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import math
|
5 |
+
|
6 |
+
from transformers import PretrainedConfig
|
7 |
+
|
8 |
+
# 把transformerConfig和transformerModel都放在一个文件中,避免类别不匹配引起的错误
|
9 |
+
|
10 |
+
class transformerConfig(PretrainedConfig):
|
11 |
+
model_type = "IQsignal_transformer"
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
vocab_size : int = 32,
|
16 |
+
key_size : int = 32,
|
17 |
+
query_size : int = 32,
|
18 |
+
value_size : int = 32,
|
19 |
+
num_hiddens : int = 32,
|
20 |
+
norm_shape : int = [32],
|
21 |
+
ffn_num_input : int = 32,
|
22 |
+
ffn_num_hiddens : int = 64,
|
23 |
+
num_heads : int = 4,
|
24 |
+
num_layers : int = 1,
|
25 |
+
dropout : int = 0.1,
|
26 |
+
|
27 |
+
**kwargs,
|
28 |
+
):
|
29 |
+
self.vocab_size = vocab_size
|
30 |
+
self.key_size = key_size
|
31 |
+
self.query_size = query_size
|
32 |
+
self.value_size = value_size
|
33 |
+
self.num_hiddens = num_hiddens
|
34 |
+
self.norm_shape = norm_shape
|
35 |
+
self.ffn_num_input = ffn_num_input
|
36 |
+
self.ffn_num_hiddens = ffn_num_hiddens
|
37 |
+
self.num_heads = num_heads
|
38 |
+
self.num_layers = num_layers
|
39 |
+
self.dropout = dropout
|
40 |
+
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
|
43 |
+
class PositionWiseFFN(nn.Module):
|
44 |
+
"""基于位置的前馈网络"""
|
45 |
+
def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
|
46 |
+
**kwargs):
|
47 |
+
super(PositionWiseFFN, self).__init__(**kwargs)
|
48 |
+
self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
|
49 |
+
self.relu = nn.ReLU()
|
50 |
+
self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
|
51 |
+
|
52 |
+
def forward(self, X):
|
53 |
+
return self.dense2(self.relu(self.dense1(X)))
|
54 |
+
|
55 |
+
|
56 |
+
class AddNorm(nn.Module):
|
57 |
+
"""残差连接后进行层规范化"""
|
58 |
+
def __init__(self, normalized_shape, dropout, **kwargs):
|
59 |
+
super(AddNorm, self).__init__(**kwargs)
|
60 |
+
self.dropout = nn.Dropout(dropout)
|
61 |
+
self.ln = nn.LayerNorm(normalized_shape)
|
62 |
+
|
63 |
+
def forward(self, X, Y):
|
64 |
+
return self.ln(self.dropout(Y) + X)
|
65 |
+
|
66 |
+
def masked_softmax(X, valid_lens):
|
67 |
+
"""通过在最后一个轴上掩蔽元素来执行softmax操作
|
68 |
+
|
69 |
+
Defined in :numref:`sec_attention-scoring-functions`"""
|
70 |
+
# X:3D张量,valid_lens:1D或2D张量
|
71 |
+
if valid_lens is None:
|
72 |
+
return nn.functional.softmax(X, dim=-1)
|
73 |
+
else:
|
74 |
+
shape = X.shape
|
75 |
+
if valid_lens.dim() == 1:
|
76 |
+
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
|
77 |
+
else:
|
78 |
+
valid_lens = valid_lens.reshape(-1)
|
79 |
+
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
|
80 |
+
X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
|
81 |
+
value=-1e6)
|
82 |
+
return nn.functional.softmax(X.reshape(shape), dim=-1)
|
83 |
+
|
84 |
+
def transpose_qkv(X, num_heads):
|
85 |
+
"""为了多注意力头的并行计算而变换形状
|
86 |
+
|
87 |
+
Defined in :numref:`sec_multihead-attention`"""
|
88 |
+
# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
|
89 |
+
# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
|
90 |
+
# num_hiddens/num_heads)
|
91 |
+
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
|
92 |
+
|
93 |
+
# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
|
94 |
+
# num_hiddens/num_heads)
|
95 |
+
X = X.permute(0, 2, 1, 3)
|
96 |
+
|
97 |
+
# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
|
98 |
+
# num_hiddens/num_heads)
|
99 |
+
return X.reshape(-1, X.shape[2], X.shape[3])
|
100 |
+
|
101 |
+
|
102 |
+
def transpose_output(X, num_heads):
|
103 |
+
"""逆转transpose_qkv函数的操作
|
104 |
+
|
105 |
+
Defined in :numref:`sec_multihead-attention`"""
|
106 |
+
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
|
107 |
+
X = X.permute(0, 2, 1, 3)
|
108 |
+
return X.reshape(X.shape[0], X.shape[1], -1)
|
109 |
+
|
110 |
+
def sequence_mask(X, valid_len, value=0):
|
111 |
+
"""在序列中屏蔽不相关的项
|
112 |
+
|
113 |
+
Defined in :numref:`sec_seq2seq_decoder`"""
|
114 |
+
maxlen = X.size(1)
|
115 |
+
mask = torch.arange((maxlen), dtype=torch.float32,
|
116 |
+
device=X.device)[None, :] < valid_len[:, None]
|
117 |
+
X[~mask] = value
|
118 |
+
return X
|
119 |
+
|
120 |
+
class DotProductAttention(nn.Module):
|
121 |
+
"""缩放点积注意力
|
122 |
+
|
123 |
+
Defined in :numref:`subsec_additive-attention`"""
|
124 |
+
def __init__(self, dropout, **kwargs):
|
125 |
+
super(DotProductAttention, self).__init__(**kwargs)
|
126 |
+
self.dropout = nn.Dropout(dropout)
|
127 |
+
|
128 |
+
# queries的形状:(batch_size,查询的个数,d)
|
129 |
+
# keys的形状:(batch_size,“键-值”对的个数,d)
|
130 |
+
# values的形状:(batch_size,“键-值”对的个数,值的维度)
|
131 |
+
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
|
132 |
+
def forward(self, queries, keys, values, valid_lens=None):
|
133 |
+
d = queries.shape[-1]
|
134 |
+
# 设置transpose_b=True为了交换keys的最后两个维度
|
135 |
+
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
|
136 |
+
self.attention_weights = masked_softmax(scores, valid_lens)
|
137 |
+
return torch.bmm(self.dropout(self.attention_weights), values)
|
138 |
+
|
139 |
+
class MultiHeadAttention(nn.Module):
|
140 |
+
"""多头注意力
|
141 |
+
|
142 |
+
Defined in :numref:`sec_multihead-attention`"""
|
143 |
+
def __init__(self, key_size, query_size, value_size, num_hiddens,
|
144 |
+
num_heads, dropout, bias=False, **kwargs):
|
145 |
+
super(MultiHeadAttention, self).__init__(**kwargs)
|
146 |
+
self.num_heads = num_heads
|
147 |
+
self.attention = DotProductAttention(dropout)
|
148 |
+
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
|
149 |
+
self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
|
150 |
+
self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
|
151 |
+
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
|
152 |
+
|
153 |
+
def forward(self, queries, keys, values, valid_lens):
|
154 |
+
# queries,keys,values的形状:
|
155 |
+
# (batch_size,查询或者“键-值”对的个数,num_hiddens)
|
156 |
+
# valid_lens 的形状:
|
157 |
+
# (batch_size,)或(batch_size,查询的个数)
|
158 |
+
# 经过变换后,输出的queries,keys,values 的形状:
|
159 |
+
# (batch_size*num_heads,查询或者“键-值”对的个数,
|
160 |
+
# num_hiddens/num_heads)
|
161 |
+
queries = transpose_qkv(self.W_q(queries), self.num_heads)
|
162 |
+
keys = transpose_qkv(self.W_k(keys), self.num_heads)
|
163 |
+
values = transpose_qkv(self.W_v(values), self.num_heads)
|
164 |
+
|
165 |
+
if valid_lens is not None:
|
166 |
+
# 在轴0,将第一项(标量或者矢量)复制num_heads次,
|
167 |
+
# 然后如此复制第二项,然后诸如此类。
|
168 |
+
valid_lens = torch.repeat_interleave(
|
169 |
+
valid_lens, repeats=self.num_heads, dim=0)
|
170 |
+
|
171 |
+
# output的形状:(batch_size*num_heads,查询的个数,
|
172 |
+
# num_hiddens/num_heads)
|
173 |
+
output = self.attention(queries, keys, values, valid_lens)
|
174 |
+
|
175 |
+
# output_concat的形状:(batch_size,查询的个数,num_hiddens)
|
176 |
+
output_concat = transpose_output(output, self.num_heads)
|
177 |
+
return self.W_o(output_concat)
|
178 |
+
|
179 |
+
class EncoderBlock(nn.Module):
|
180 |
+
"""Transformer编码器块"""
|
181 |
+
def __init__(self, key_size, query_size, value_size, num_hiddens,
|
182 |
+
norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
|
183 |
+
dropout, use_bias=False, **kwargs):
|
184 |
+
super(EncoderBlock, self).__init__(**kwargs)
|
185 |
+
self.attention = MultiHeadAttention(
|
186 |
+
key_size, query_size, value_size, num_hiddens, num_heads, dropout,
|
187 |
+
use_bias)
|
188 |
+
self.addnorm1 = AddNorm(norm_shape, dropout)
|
189 |
+
self.ffn = PositionWiseFFN(
|
190 |
+
ffn_num_input, ffn_num_hiddens, num_hiddens)
|
191 |
+
self.addnorm2 = AddNorm(norm_shape, dropout)
|
192 |
+
|
193 |
+
def forward(self, X, valid_lens):
|
194 |
+
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
|
195 |
+
return self.addnorm2(Y, self.ffn(Y))
|
196 |
+
|
197 |
+
class Encoder(nn.Module):
|
198 |
+
"""编码器-解码器架构的基本编码器接口"""
|
199 |
+
def __init__(self, **kwargs):
|
200 |
+
super(Encoder, self).__init__(**kwargs)
|
201 |
+
|
202 |
+
def forward(self, X, *args):
|
203 |
+
raise NotImplementedError
|
204 |
+
|
205 |
+
class transformerModel(PreTrainedModel):
|
206 |
+
|
207 |
+
config_class = transformerConfig
|
208 |
+
|
209 |
+
def __init__(self, config):
|
210 |
+
super().__init__(config)
|
211 |
+
|
212 |
+
self.num_hiddens = config.num_hiddens
|
213 |
+
self.Linear = nn.Linear(config.vocab_size, config.vocab_size)
|
214 |
+
# self.embedding = nn.Embedding(vocab_size, num_hiddens) # 将输入vocab_size的维度 转化为 想要的num_hiddens维度
|
215 |
+
# self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
|
216 |
+
self.ln = nn.LayerNorm(config.norm_shape)
|
217 |
+
self.blks = nn.Sequential()
|
218 |
+
for i in range(config.num_layers):
|
219 |
+
self.blks.add_module("block" + str(i),
|
220 |
+
EncoderBlock(config.key_size, config.query_size, config.value_size, config.num_hiddens,
|
221 |
+
config.norm_shape, config.ffn_num_input, config.ffn_num_hiddens,
|
222 |
+
config.num_heads, config.dropout))
|
223 |
+
|
224 |
+
self.l1 = nn.Linear(64, 16)
|
225 |
+
self.l2 = nn.Linear(16, 5)
|
226 |
+
|
227 |
+
def forward(self, X, valid_lens, *args):
|
228 |
+
# 因为位置编码值在-1和1之间,
|
229 |
+
# 因此嵌入值乘以嵌入维度的平方根进行缩放,
|
230 |
+
# 然后再与位置编码相加。
|
231 |
+
X = self.ln(self.Linear(X).to(torch.float32))
|
232 |
+
self.attention_weights = [None] * len(self.blks)
|
233 |
+
for i, blk in enumerate(self.blks):
|
234 |
+
X = blk(X, valid_lens)
|
235 |
+
self.attention_weights[
|
236 |
+
i] = blk.attention.attention.attention_weights
|
237 |
+
|
238 |
+
X = self.l1(torch.reshape(X, [8, 64]))
|
239 |
+
X = self.l2(X)
|
240 |
+
return X
|
241 |
+
|
242 |
+
# class TransformerEncoder(nn.Module):
|
243 |
+
# """Transformer编码器"""
|
244 |
+
# def __init__(self, vocab_size, key_size, query_size, value_size,
|
245 |
+
# num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
|
246 |
+
# num_heads, num_layers, dropout, use_bias=False, **kwargs):
|
247 |
+
# super(TransformerEncoder, self).__init__(**kwargs)
|
248 |
+
# self.num_hiddens = num_hiddens
|
249 |
+
# self.Linear = nn.Linear(vocab_size,vocab_size)
|
250 |
+
# # self.embedding = nn.Embedding(vocab_size, num_hiddens) # 将输入vocab_size的维度 转化为 想要的num_hiddens维度
|
251 |
+
# # self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
|
252 |
+
# self.ln = nn.LayerNorm(vocab_size)
|
253 |
+
# self.blks = nn.Sequential()
|
254 |
+
# for i in range(num_layers):
|
255 |
+
# self.blks.add_module("block"+str(i),
|
256 |
+
# EncoderBlock(key_size, query_size, value_size, num_hiddens,
|
257 |
+
# norm_shape, ffn_num_input, ffn_num_hiddens,
|
258 |
+
# num_heads, dropout, use_bias))
|
259 |
+
#
|
260 |
+
# self.l1 = nn.Linear(64, 16)
|
261 |
+
# self.l2 = nn.Linear(16, 5)
|
262 |
+
#
|
263 |
+
# def forward(self, X, valid_lens, *args):
|
264 |
+
# # 因为位置编码值在-1和1之间,
|
265 |
+
# # 因此嵌入值乘以嵌入维度的平方根进行缩放,
|
266 |
+
# # 然后再与位置编码相加。
|
267 |
+
# X = self.ln(self.Linear(X))
|
268 |
+
# self.attention_weights = [None] * len(self.blks)
|
269 |
+
# for i, blk in enumerate(self.blks):
|
270 |
+
# X = blk(X, valid_lens)
|
271 |
+
# self.attention_weights[
|
272 |
+
# i] = blk.attention.attention.attention_weights
|
273 |
+
#
|
274 |
+
# X = self.l1(torch.reshape(X,[8, 64]))
|
275 |
+
# X = self.l2(X)
|
276 |
+
# return X
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
|