|
from transformers import PreTrainedModel
|
|
import torch
|
|
from torch import nn
|
|
import math
|
|
|
|
from transformers import PretrainedConfig
|
|
|
|
|
|
|
|
class transformerConfig(PretrainedConfig):
|
|
model_type = "IQsignal_transformer"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size : int = 32,
|
|
key_size : int = 32,
|
|
query_size : int = 32,
|
|
value_size : int = 32,
|
|
num_hiddens : int = 32,
|
|
norm_shape : int = [32],
|
|
ffn_num_input : int = 32,
|
|
ffn_num_hiddens : int = 64,
|
|
num_heads : int = 4,
|
|
num_layers : int = 1,
|
|
dropout : int = 0.1,
|
|
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.key_size = key_size
|
|
self.query_size = query_size
|
|
self.value_size = value_size
|
|
self.num_hiddens = num_hiddens
|
|
self.norm_shape = norm_shape
|
|
self.ffn_num_input = ffn_num_input
|
|
self.ffn_num_hiddens = ffn_num_hiddens
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.dropout = dropout
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
class PositionWiseFFN(nn.Module):
|
|
"""基于位置的前馈网络"""
|
|
def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
|
|
**kwargs):
|
|
super(PositionWiseFFN, self).__init__(**kwargs)
|
|
self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
|
|
self.relu = nn.ReLU()
|
|
self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
|
|
|
|
def forward(self, X):
|
|
return self.dense2(self.relu(self.dense1(X)))
|
|
|
|
|
|
class AddNorm(nn.Module):
|
|
"""残差连接后进行层规范化"""
|
|
def __init__(self, normalized_shape, dropout, **kwargs):
|
|
super(AddNorm, self).__init__(**kwargs)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.ln = nn.LayerNorm(normalized_shape)
|
|
|
|
def forward(self, X, Y):
|
|
return self.ln(self.dropout(Y) + X)
|
|
|
|
def masked_softmax(X, valid_lens):
|
|
"""通过在最后一个轴上掩蔽元素来执行softmax操作
|
|
|
|
Defined in :numref:`sec_attention-scoring-functions`"""
|
|
|
|
if valid_lens is None:
|
|
return nn.functional.softmax(X, dim=-1)
|
|
else:
|
|
shape = X.shape
|
|
if valid_lens.dim() == 1:
|
|
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
|
|
else:
|
|
valid_lens = valid_lens.reshape(-1)
|
|
|
|
X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
|
|
value=-1e6)
|
|
return nn.functional.softmax(X.reshape(shape), dim=-1)
|
|
|
|
def transpose_qkv(X, num_heads):
|
|
"""为了多注意力头的并行计算而变换形状
|
|
|
|
Defined in :numref:`sec_multihead-attention`"""
|
|
|
|
|
|
|
|
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
|
|
|
|
|
|
|
|
X = X.permute(0, 2, 1, 3)
|
|
|
|
|
|
|
|
return X.reshape(-1, X.shape[2], X.shape[3])
|
|
|
|
|
|
def transpose_output(X, num_heads):
|
|
"""逆转transpose_qkv函数的操作
|
|
|
|
Defined in :numref:`sec_multihead-attention`"""
|
|
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
|
|
X = X.permute(0, 2, 1, 3)
|
|
return X.reshape(X.shape[0], X.shape[1], -1)
|
|
|
|
def sequence_mask(X, valid_len, value=0):
|
|
"""在序列中屏蔽不相关的项
|
|
|
|
Defined in :numref:`sec_seq2seq_decoder`"""
|
|
maxlen = X.size(1)
|
|
mask = torch.arange((maxlen), dtype=torch.float32,
|
|
device=X.device)[None, :] < valid_len[:, None]
|
|
X[~mask] = value
|
|
return X
|
|
|
|
class DotProductAttention(nn.Module):
|
|
"""缩放点积注意力
|
|
|
|
Defined in :numref:`subsec_additive-attention`"""
|
|
def __init__(self, dropout, **kwargs):
|
|
super(DotProductAttention, self).__init__(**kwargs)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, queries, keys, values, valid_lens=None):
|
|
d = queries.shape[-1]
|
|
|
|
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
|
|
self.attention_weights = masked_softmax(scores, valid_lens)
|
|
return torch.bmm(self.dropout(self.attention_weights), values)
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
"""多头注意力
|
|
|
|
Defined in :numref:`sec_multihead-attention`"""
|
|
def __init__(self, key_size, query_size, value_size, num_hiddens,
|
|
num_heads, dropout, bias=False, **kwargs):
|
|
super(MultiHeadAttention, self).__init__(**kwargs)
|
|
self.num_heads = num_heads
|
|
self.attention = DotProductAttention(dropout)
|
|
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
|
|
self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
|
|
self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
|
|
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
|
|
|
|
def forward(self, queries, keys, values, valid_lens):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
queries = transpose_qkv(self.W_q(queries), self.num_heads)
|
|
keys = transpose_qkv(self.W_k(keys), self.num_heads)
|
|
values = transpose_qkv(self.W_v(values), self.num_heads)
|
|
|
|
if valid_lens is not None:
|
|
|
|
|
|
valid_lens = torch.repeat_interleave(
|
|
valid_lens, repeats=self.num_heads, dim=0)
|
|
|
|
|
|
|
|
output = self.attention(queries, keys, values, valid_lens)
|
|
|
|
|
|
output_concat = transpose_output(output, self.num_heads)
|
|
return self.W_o(output_concat)
|
|
|
|
class EncoderBlock(nn.Module):
|
|
"""Transformer编码器块"""
|
|
def __init__(self, key_size, query_size, value_size, num_hiddens,
|
|
norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
|
|
dropout, use_bias=False, **kwargs):
|
|
super(EncoderBlock, self).__init__(**kwargs)
|
|
self.attention = MultiHeadAttention(
|
|
key_size, query_size, value_size, num_hiddens, num_heads, dropout,
|
|
use_bias)
|
|
self.addnorm1 = AddNorm(norm_shape, dropout)
|
|
self.ffn = PositionWiseFFN(
|
|
ffn_num_input, ffn_num_hiddens, num_hiddens)
|
|
self.addnorm2 = AddNorm(norm_shape, dropout)
|
|
|
|
def forward(self, X, valid_lens):
|
|
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
|
|
return self.addnorm2(Y, self.ffn(Y))
|
|
|
|
class Encoder(nn.Module):
|
|
"""编码器-解码器架构的基本编码器接口"""
|
|
def __init__(self, **kwargs):
|
|
super(Encoder, self).__init__(**kwargs)
|
|
|
|
def forward(self, X, *args):
|
|
raise NotImplementedError
|
|
|
|
class transformerModel(PreTrainedModel):
|
|
|
|
config_class = transformerConfig
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.num_hiddens = config.num_hiddens
|
|
self.Linear = nn.Linear(config.vocab_size, config.vocab_size)
|
|
|
|
|
|
self.ln = nn.LayerNorm(config.norm_shape)
|
|
self.blks = nn.Sequential()
|
|
for i in range(config.num_layers):
|
|
self.blks.add_module("block" + str(i),
|
|
EncoderBlock(config.key_size, config.query_size, config.value_size, config.num_hiddens,
|
|
config.norm_shape, config.ffn_num_input, config.ffn_num_hiddens,
|
|
config.num_heads, config.dropout))
|
|
|
|
self.l1 = nn.Linear(64, 16)
|
|
self.l2 = nn.Linear(16, 4)
|
|
|
|
def forward(self, X, valid_lens, *args):
|
|
|
|
|
|
|
|
X = self.ln(self.Linear(X).to(torch.float32))
|
|
self.attention_weights = [None] * len(self.blks)
|
|
for i, blk in enumerate(self.blks):
|
|
X = blk(X, valid_lens)
|
|
self.attention_weights[
|
|
i] = blk.attention.attention.attention_weights
|
|
|
|
X = self.l1(torch.reshape(X, [8, 64]))
|
|
X = self.l2(X)
|
|
return X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|