File size: 11,761 Bytes
1a58003 434f55f 1a58003 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from transformers import PreTrainedModel
import torch
from torch import nn
import math
from transformers import PretrainedConfig
# 把transformerConfig和transformerModel都放在一个文件中,避免类别不匹配引起的错误
class transformerConfig(PretrainedConfig):
model_type = "IQsignal_transformer"
def __init__(
self,
vocab_size : int = 32,
key_size : int = 32,
query_size : int = 32,
value_size : int = 32,
num_hiddens : int = 32,
norm_shape : int = [32],
ffn_num_input : int = 32,
ffn_num_hiddens : int = 64,
num_heads : int = 4,
num_layers : int = 1,
dropout : int = 0.1,
**kwargs,
):
self.vocab_size = vocab_size
self.key_size = key_size
self.query_size = query_size
self.value_size = value_size
self.num_hiddens = num_hiddens
self.norm_shape = norm_shape
self.ffn_num_input = ffn_num_input
self.ffn_num_hiddens = ffn_num_hiddens
self.num_heads = num_heads
self.num_layers = num_layers
self.dropout = dropout
super().__init__(**kwargs)
class PositionWiseFFN(nn.Module):
"""基于位置的前馈网络"""
def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,
**kwargs):
super(PositionWiseFFN, self).__init__(**kwargs)
self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
self.relu = nn.ReLU()
self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
def forward(self, X):
return self.dense2(self.relu(self.dense1(X)))
class AddNorm(nn.Module):
"""残差连接后进行层规范化"""
def __init__(self, normalized_shape, dropout, **kwargs):
super(AddNorm, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
self.ln = nn.LayerNorm(normalized_shape)
def forward(self, X, Y):
return self.ln(self.dropout(Y) + X)
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作
Defined in :numref:`sec_attention-scoring-functions`"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
def transpose_qkv(X, num_heads):
"""为了多注意力头的并行计算而变换形状
Defined in :numref:`sec_multihead-attention`"""
# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
# num_hiddens/num_heads)
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
X = X.permute(0, 2, 1, 3)
# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
return X.reshape(-1, X.shape[2], X.shape[3])
def transpose_output(X, num_heads):
"""逆转transpose_qkv函数的操作
Defined in :numref:`sec_multihead-attention`"""
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
X = X.permute(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)
def sequence_mask(X, valid_len, value=0):
"""在序列中屏蔽不相关的项
Defined in :numref:`sec_seq2seq_decoder`"""
maxlen = X.size(1)
mask = torch.arange((maxlen), dtype=torch.float32,
device=X.device)[None, :] < valid_len[:, None]
X[~mask] = value
return X
class DotProductAttention(nn.Module):
"""缩放点积注意力
Defined in :numref:`subsec_additive-attention`"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values)
class MultiHeadAttention(nn.Module):
"""多头注意力
Defined in :numref:`sec_multihead-attention`"""
def __init__(self, key_size, query_size, value_size, num_hiddens,
num_heads, dropout, bias=False, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.attention = DotProductAttention(dropout)
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
def forward(self, queries, keys, values, valid_lens):
# queries,keys,values的形状:
# (batch_size,查询或者“键-值”对的个数,num_hiddens)
# valid_lens 的形状:
# (batch_size,)或(batch_size,查询的个数)
# 经过变换后,输出的queries,keys,values 的形状:
# (batch_size*num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
queries = transpose_qkv(self.W_q(queries), self.num_heads)
keys = transpose_qkv(self.W_k(keys), self.num_heads)
values = transpose_qkv(self.W_v(values), self.num_heads)
if valid_lens is not None:
# 在轴0,将第一项(标量或者矢量)复制num_heads次,
# 然后如此复制第二项,然后诸如此类。
valid_lens = torch.repeat_interleave(
valid_lens, repeats=self.num_heads, dim=0)
# output的形状:(batch_size*num_heads,查询的个数,
# num_hiddens/num_heads)
output = self.attention(queries, keys, values, valid_lens)
# output_concat的形状:(batch_size,查询的个数,num_hiddens)
output_concat = transpose_output(output, self.num_heads)
return self.W_o(output_concat)
class EncoderBlock(nn.Module):
"""Transformer编码器块"""
def __init__(self, key_size, query_size, value_size, num_hiddens,
norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,
dropout, use_bias=False, **kwargs):
super(EncoderBlock, self).__init__(**kwargs)
self.attention = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout,
use_bias)
self.addnorm1 = AddNorm(norm_shape, dropout)
self.ffn = PositionWiseFFN(
ffn_num_input, ffn_num_hiddens, num_hiddens)
self.addnorm2 = AddNorm(norm_shape, dropout)
def forward(self, X, valid_lens):
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
return self.addnorm2(Y, self.ffn(Y))
class Encoder(nn.Module):
"""编码器-解码器架构的基本编码器接口"""
def __init__(self, **kwargs):
super(Encoder, self).__init__(**kwargs)
def forward(self, X, *args):
raise NotImplementedError
class transformerModel(PreTrainedModel):
config_class = transformerConfig
def __init__(self, config):
super().__init__(config)
self.num_hiddens = config.num_hiddens
self.Linear = nn.Linear(config.vocab_size, config.vocab_size)
# self.embedding = nn.Embedding(vocab_size, num_hiddens) # 将输入vocab_size的维度 转化为 想要的num_hiddens维度
# self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
self.ln = nn.LayerNorm(config.norm_shape)
self.blks = nn.Sequential()
for i in range(config.num_layers):
self.blks.add_module("block" + str(i),
EncoderBlock(config.key_size, config.query_size, config.value_size, config.num_hiddens,
config.norm_shape, config.ffn_num_input, config.ffn_num_hiddens,
config.num_heads, config.dropout))
self.l1 = nn.Linear(64, 16)
self.l2 = nn.Linear(16, 4)
def forward(self, X, valid_lens, *args):
# 因为位置编码值在-1和1之间,
# 因此嵌入值乘以嵌入维度的平方根进行缩放,
# 然后再与位置编码相加。
X = self.ln(self.Linear(X).to(torch.float32))
self.attention_weights = [None] * len(self.blks)
for i, blk in enumerate(self.blks):
X = blk(X, valid_lens)
self.attention_weights[
i] = blk.attention.attention.attention_weights
X = self.l1(torch.reshape(X, [8, 64]))
X = self.l2(X)
return X
# class TransformerEncoder(nn.Module):
# """Transformer编码器"""
# def __init__(self, vocab_size, key_size, query_size, value_size,
# num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
# num_heads, num_layers, dropout, use_bias=False, **kwargs):
# super(TransformerEncoder, self).__init__(**kwargs)
# self.num_hiddens = num_hiddens
# self.Linear = nn.Linear(vocab_size,vocab_size)
# # self.embedding = nn.Embedding(vocab_size, num_hiddens) # 将输入vocab_size的维度 转化为 想要的num_hiddens维度
# # self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
# self.ln = nn.LayerNorm(vocab_size)
# self.blks = nn.Sequential()
# for i in range(num_layers):
# self.blks.add_module("block"+str(i),
# EncoderBlock(key_size, query_size, value_size, num_hiddens,
# norm_shape, ffn_num_input, ffn_num_hiddens,
# num_heads, dropout, use_bias))
#
# self.l1 = nn.Linear(64, 16)
# self.l2 = nn.Linear(16, 5)
#
# def forward(self, X, valid_lens, *args):
# # 因为位置编码值在-1和1之间,
# # 因此嵌入值乘以嵌入维度的平方根进行缩放,
# # 然后再与位置编码相加。
# X = self.ln(self.Linear(X))
# self.attention_weights = [None] * len(self.blks)
# for i, blk in enumerate(self.blks):
# X = blk(X, valid_lens)
# self.attention_weights[
# i] = blk.attention.attention.attention_weights
#
# X = self.l1(torch.reshape(X,[8, 64]))
# X = self.l2(X)
# return X
|