File size: 11,761 Bytes
1a58003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434f55f
1a58003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from transformers import PreTrainedModel
import torch
from torch import nn
import math

from transformers import PretrainedConfig

# 把transformerConfig和transformerModel都放在一个文件中,避免类别不匹配引起的错误

class transformerConfig(PretrainedConfig):
    model_type = "IQsignal_transformer"

    def __init__(

        self,

        vocab_size      : int = 32,

        key_size        : int = 32,

        query_size      : int = 32,

        value_size      : int = 32,

        num_hiddens     : int = 32,

        norm_shape      : int = [32],

        ffn_num_input   : int = 32,

        ffn_num_hiddens : int = 64,

        num_heads       : int = 4,

        num_layers      : int = 1,

        dropout         : int = 0.1,



        **kwargs,

    ):
        self.vocab_size      = vocab_size
        self.key_size        = key_size
        self.query_size      = query_size
        self.value_size      = value_size
        self.num_hiddens     = num_hiddens
        self.norm_shape      = norm_shape
        self.ffn_num_input   = ffn_num_input
        self.ffn_num_hiddens = ffn_num_hiddens
        self.num_heads       = num_heads
        self.num_layers      = num_layers
        self.dropout         = dropout

        super().__init__(**kwargs)

class PositionWiseFFN(nn.Module):
    """基于位置的前馈网络"""
    def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs,

                 **kwargs):
        super(PositionWiseFFN, self).__init__(**kwargs)
        self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
        self.relu = nn.ReLU()
        self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)

    def forward(self, X):
        return self.dense2(self.relu(self.dense1(X)))


class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)

    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

def masked_softmax(X, valid_lens):
    """通过在最后一个轴上掩蔽元素来执行softmax操作



    Defined in :numref:`sec_attention-scoring-functions`"""
    # X:3D张量,valid_lens:1D或2D张量
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[1])
        else:
            valid_lens = valid_lens.reshape(-1)
        # 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
        X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
                              value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)

def transpose_qkv(X, num_heads):
    """为了多注意力头的并行计算而变换形状



    Defined in :numref:`sec_multihead-attention`"""
    # 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
    # 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
    # num_hiddens/num_heads)
    X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)

    # 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    X = X.permute(0, 2, 1, 3)

    # 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
    # num_hiddens/num_heads)
    return X.reshape(-1, X.shape[2], X.shape[3])


def transpose_output(X, num_heads):
    """逆转transpose_qkv函数的操作



    Defined in :numref:`sec_multihead-attention`"""
    X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
    X = X.permute(0, 2, 1, 3)
    return X.reshape(X.shape[0], X.shape[1], -1)

def sequence_mask(X, valid_len, value=0):
    """在序列中屏蔽不相关的项



    Defined in :numref:`sec_seq2seq_decoder`"""
    maxlen = X.size(1)
    mask = torch.arange((maxlen), dtype=torch.float32,
                        device=X.device)[None, :] < valid_len[:, None]
    X[~mask] = value
    return X

class DotProductAttention(nn.Module):
    """缩放点积注意力



    Defined in :numref:`subsec_additive-attention`"""
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # queries的形状:(batch_size,查询的个数,d)
    # keys的形状:(batch_size,“键-值”对的个数,d)
    # values的形状:(batch_size,“键-值”对的个数,值的维度)
    # valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
    def forward(self, queries, keys, values, valid_lens=None):
        d = queries.shape[-1]
        # 设置transpose_b=True为了交换keys的最后两个维度
        scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
        self.attention_weights = masked_softmax(scores, valid_lens)
        return torch.bmm(self.dropout(self.attention_weights), values)

class MultiHeadAttention(nn.Module):
    """多头注意力



    Defined in :numref:`sec_multihead-attention`"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,

                 num_heads, dropout, bias=False, **kwargs):
        super(MultiHeadAttention, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.attention = DotProductAttention(dropout)
        self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
        self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
        self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
        self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)

    def forward(self, queries, keys, values, valid_lens):
        # queries,keys,values的形状:
        # (batch_size,查询或者“键-值”对的个数,num_hiddens)
        # valid_lens 的形状:
        # (batch_size,)或(batch_size,查询的个数)
        # 经过变换后,输出的queries,keys,values 的形状:
        # (batch_size*num_heads,查询或者“键-值”对的个数,
        # num_hiddens/num_heads)
        queries = transpose_qkv(self.W_q(queries), self.num_heads)
        keys = transpose_qkv(self.W_k(keys), self.num_heads)
        values = transpose_qkv(self.W_v(values), self.num_heads)

        if valid_lens is not None:
            # 在轴0,将第一项(标量或者矢量)复制num_heads次,
            # 然后如此复制第二项,然后诸如此类。
            valid_lens = torch.repeat_interleave(
                valid_lens, repeats=self.num_heads, dim=0)

        # output的形状:(batch_size*num_heads,查询的个数,
        # num_hiddens/num_heads)
        output = self.attention(queries, keys, values, valid_lens)

        # output_concat的形状:(batch_size,查询的个数,num_hiddens)
        output_concat = transpose_output(output, self.num_heads)
        return self.W_o(output_concat)

class EncoderBlock(nn.Module):
    """Transformer编码器块"""
    def __init__(self, key_size, query_size, value_size, num_hiddens,

                 norm_shape, ffn_num_input, ffn_num_hiddens, num_heads,

                 dropout, use_bias=False, **kwargs):
        super(EncoderBlock, self).__init__(**kwargs)
        self.attention = MultiHeadAttention(
            key_size, query_size, value_size, num_hiddens, num_heads, dropout,
            use_bias)
        self.addnorm1 = AddNorm(norm_shape, dropout)
        self.ffn = PositionWiseFFN(
            ffn_num_input, ffn_num_hiddens, num_hiddens)
        self.addnorm2 = AddNorm(norm_shape, dropout)

    def forward(self, X, valid_lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))

class Encoder(nn.Module):
    """编码器-解码器架构的基本编码器接口"""
    def __init__(self, **kwargs):
        super(Encoder, self).__init__(**kwargs)

    def forward(self, X, *args):
        raise NotImplementedError

class transformerModel(PreTrainedModel):

    config_class = transformerConfig

    def __init__(self, config):
        super().__init__(config)

        self.num_hiddens = config.num_hiddens
        self.Linear = nn.Linear(config.vocab_size, config.vocab_size)
        # self.embedding = nn.Embedding(vocab_size, num_hiddens)      # 将输入vocab_size的维度  转化为  想要的num_hiddens维度
        # self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
        self.ln = nn.LayerNorm(config.norm_shape)
        self.blks = nn.Sequential()
        for i in range(config.num_layers):
            self.blks.add_module("block" + str(i),
                                 EncoderBlock(config.key_size, config.query_size, config.value_size, config.num_hiddens,
                                              config.norm_shape, config.ffn_num_input, config.ffn_num_hiddens,
                                              config.num_heads, config.dropout))

        self.l1 = nn.Linear(64, 16)
        self.l2 = nn.Linear(16, 4)

    def forward(self, X, valid_lens, *args):
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,
        # 然后再与位置编码相加。
        X = self.ln(self.Linear(X).to(torch.float32))
        self.attention_weights = [None] * len(self.blks)
        for i, blk in enumerate(self.blks):
            X = blk(X, valid_lens)
            self.attention_weights[
                i] = blk.attention.attention.attention_weights

        X = self.l1(torch.reshape(X, [8, 64]))
        X = self.l2(X)
        return X

# class TransformerEncoder(nn.Module):
#     """Transformer编码器"""
#     def __init__(self, vocab_size, key_size, query_size, value_size,
#                  num_hiddens, norm_shape, ffn_num_input, ffn_num_hiddens,
#                  num_heads, num_layers, dropout, use_bias=False, **kwargs):
#         super(TransformerEncoder, self).__init__(**kwargs)
#         self.num_hiddens = num_hiddens
#         self.Linear = nn.Linear(vocab_size,vocab_size)
#         # self.embedding = nn.Embedding(vocab_size, num_hiddens)      # 将输入vocab_size的维度  转化为  想要的num_hiddens维度
#         # self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
#         self.ln = nn.LayerNorm(vocab_size)
#         self.blks = nn.Sequential()
#         for i in range(num_layers):
#             self.blks.add_module("block"+str(i),
#                 EncoderBlock(key_size, query_size, value_size, num_hiddens,
#                              norm_shape, ffn_num_input, ffn_num_hiddens,
#                              num_heads, dropout, use_bias))
#
#         self.l1 = nn.Linear(64, 16)
#         self.l2 = nn.Linear(16, 5)
#
#     def forward(self, X, valid_lens, *args):
#         # 因为位置编码值在-1和1之间,
#         # 因此嵌入值乘以嵌入维度的平方根进行缩放,
#         # 然后再与位置编码相加。
#         X = self.ln(self.Linear(X))
#         self.attention_weights = [None] * len(self.blks)
#         for i, blk in enumerate(self.blks):
#             X = blk(X, valid_lens)
#             self.attention_weights[
#                 i] = blk.attention.attention.attention_weights
#
#         X = self.l1(torch.reshape(X,[8, 64]))
#         X = self.l2(X)
#         return X