Upload model
Browse files- config.json +3 -1
- model.safetensors +1 -1
- modeling_IQtransformer.py +4 -2
config.json
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"ffn_num_input": 32,
|
12 |
"key_size": 32,
|
13 |
"model_type": "IQsignal_transformer",
|
14 |
-
"norm_shape":
|
|
|
|
|
15 |
"num_heads": 4,
|
16 |
"num_hiddens": 32,
|
17 |
"num_layers": 2,
|
|
|
11 |
"ffn_num_input": 32,
|
12 |
"key_size": 32,
|
13 |
"model_type": "IQsignal_transformer",
|
14 |
+
"norm_shape": [
|
15 |
+
32
|
16 |
+
],
|
17 |
"num_heads": 4,
|
18 |
"num_hiddens": 32,
|
19 |
"num_layers": 2,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 79108
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0086aa0b6c4b67c2d818b2038c0232b0c8d86445867f1d73489eb2e5f4bf41d
|
3 |
size 79108
|
modeling_IQtransformer.py
CHANGED
@@ -5,6 +5,8 @@ import math
|
|
5 |
|
6 |
from transformers import PretrainedConfig
|
7 |
|
|
|
|
|
8 |
class transformerConfig(PretrainedConfig):
|
9 |
model_type = "IQsignal_transformer"
|
10 |
|
@@ -15,7 +17,7 @@ class transformerConfig(PretrainedConfig):
|
|
15 |
query_size : int = 32,
|
16 |
value_size : int = 32,
|
17 |
num_hiddens : int = 32,
|
18 |
-
norm_shape : int = 32,
|
19 |
ffn_num_input : int = 32,
|
20 |
ffn_num_hiddens : int = 64,
|
21 |
num_heads : int = 4,
|
@@ -211,7 +213,7 @@ class transformerModel(PreTrainedModel):
|
|
211 |
self.Linear = nn.Linear(config.vocab_size, config.vocab_size)
|
212 |
# self.embedding = nn.Embedding(vocab_size, num_hiddens) # 将输入vocab_size的维度 转化为 想要的num_hiddens维度
|
213 |
# self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
|
214 |
-
self.ln = nn.LayerNorm(config.
|
215 |
self.blks = nn.Sequential()
|
216 |
for i in range(config.num_layers):
|
217 |
self.blks.add_module("block" + str(i),
|
|
|
5 |
|
6 |
from transformers import PretrainedConfig
|
7 |
|
8 |
+
# 把transformerConfig和transformerModel都放在一个文件中,避免类别不匹配引起的错误
|
9 |
+
|
10 |
class transformerConfig(PretrainedConfig):
|
11 |
model_type = "IQsignal_transformer"
|
12 |
|
|
|
17 |
query_size : int = 32,
|
18 |
value_size : int = 32,
|
19 |
num_hiddens : int = 32,
|
20 |
+
norm_shape : int = [32],
|
21 |
ffn_num_input : int = 32,
|
22 |
ffn_num_hiddens : int = 64,
|
23 |
num_heads : int = 4,
|
|
|
213 |
self.Linear = nn.Linear(config.vocab_size, config.vocab_size)
|
214 |
# self.embedding = nn.Embedding(vocab_size, num_hiddens) # 将输入vocab_size的维度 转化为 想要的num_hiddens维度
|
215 |
# self.pos_encoding = d2l.PositionalEncoding(num_hiddens, dropout)
|
216 |
+
self.ln = nn.LayerNorm(config.norm_shape)
|
217 |
self.blks = nn.Sequential()
|
218 |
for i in range(config.num_layers):
|
219 |
self.blks.add_module("block" + str(i),
|