--- base_model: - John6666/wai-shuffle-noob-vpred01-sdxl tags: - quantization quantized_by: btaskel pipeline_tag: text-to-image --- From John6666/wai-shuffle-noob-vpred01-sdxl: https://civitai.com/models/989367/wai-shuffle-noob Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed. In some benchmarks, selecting a large-parameter high-quantization LLM tends to perform better than a small-parameter low-quantization LLM. 根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点 在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。