--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 68fba9f2-b005-4b97-9833-908e4690ef49 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d0528b9d54249648_train_data.json ds_type: json format: custom path: /workspace/input_data/d0528b9d54249648_train_data.json type: field_instruction: user_prompt field_output: resp format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: brixeus/68fba9f2-b005-4b97-9833-908e4690ef49 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1800 micro_batch_size: 4 mlflow_experiment_name: /tmp/d0528b9d54249648_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-08 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: acopia-grant wandb_mode: online wandb_name: 5b3b6012-6204-4a48-bfe1-e7436b72b5a9 wandb_project: Gradients-On-60 wandb_run: your_name wandb_runid: 5b3b6012-6204-4a48-bfe1-e7436b72b5a9 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# 68fba9f2-b005-4b97-9833-908e4690ef49 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 50 - training_steps: 1800 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 0.9346 | | 0.2196 | 0.0698 | 150 | 0.3730 | | 0.2056 | 0.1396 | 300 | 0.3569 | | 0.2066 | 0.2094 | 450 | 0.3271 | | 0.196 | 0.2792 | 600 | 0.3066 | | 0.2034 | 0.3490 | 750 | 0.2987 | | 0.205 | 0.4188 | 900 | 0.2899 | | 0.1991 | 0.4886 | 1050 | 0.2892 | | 0.2119 | 0.5584 | 1200 | 0.2809 | | 0.1991 | 0.6282 | 1350 | 0.2826 | | 0.1819 | 0.6980 | 1500 | 0.2763 | | 0.1869 | 0.7678 | 1650 | 0.2705 | | 0.1749 | 0.8376 | 1800 | 0.2663 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1