britojr commited on
Commit
cb5a293
·
1 Parent(s): 35cfc51

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.37 +/- 0.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3412120a438dc1184e903238bc01600c50c649cc43fb1729ac10074bcdeb6cc4
3
+ size 107770
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd4cab90700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fd4cab8cf40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 100000,
45
+ "_total_timesteps": 100000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679162001223883128,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyUZvPqg/F712ag0/yUZvPqg/F712ag0/yUZvPqg/F712ag0/yUZvPqg/F712ag0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXbblvv+3+L5Lt82/SVKEP7htDT/lahU/DAIbPvK5CT21DzG/vTd/P+3vxr7c8589lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjzJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjzJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjzJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.23366846 -0.03692594 0.5524057 ]\n [ 0.23366846 -0.03692594 0.5524057 ]\n [ 0.23366846 -0.03692594 0.5524057 ]\n [ 0.23366846 -0.03692594 0.5524057 ]]",
60
+ "desired_goal": "[[-0.44865695 -0.48577878 -1.6071562 ]\n [ 1.0337611 0.5524554 0.58366233]\n [ 0.151375 0.0336246 -0.6916459 ]\n [ 0.99694425 -0.38854924 0.07810184]]",
61
+ "observation": "[[ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]\n [ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]\n [ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]\n [ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACMoZvfAhFr4WoV8+msasuz22wz2EdKI9MOTCvfmpYL2UDY09FowRPvdHob0ou4I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.03754619 -0.14661384 0.21838793]\n [-0.0052727 0.09556244 0.0793238 ]\n [-0.0951618 -0.0548496 0.06887355]\n [ 0.14213595 -0.07875054 0.25533414]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfEYiNIIN9b+UhpRSlIwBbJRLMowBdJRHQHUpgy6+WW11fZQoaAZoCWgPQwi46GSp9f71v5SGlFKUaBVLMmgWR0B1JgmNR3vAdX2UKGgGaAloD0MIY5gTtMnh+b+UhpRSlGgVSzJoFkdAdSErIo3JgnV9lChoBmgJaA9DCHyA7suZ7fu/lIaUUpRoFUsyaBZHQHUdTOTq0MR1fZQoaAZoCWgPQwhm3NRA8/n0v5SGlFKUaBVLMmgWR0B1M5YhdMTOdX2UKGgGaAloD0MIKbFre7vl+b+UhpRSlGgVSzJoFkdAdTAaScLBsXV9lChoBmgJaA9DCBGPxMvTOfi/lIaUUpRoFUsyaBZHQHUrNr0rbxp1fZQoaAZoCWgPQwgH7GrylHUAwJSGlFKUaBVLMmgWR0B1J1Yq5LAYdX2UKGgGaAloD0MIAwe0dAVb+r+UhpRSlGgVSzJoFkdAdT1xfOUt7XV9lChoBmgJaA9DCB4Wak3zTvi/lIaUUpRoFUsyaBZHQHU59k8Rtgt1fZQoaAZoCWgPQwj/7EeKyPD6v5SGlFKUaBVLMmgWR0B1NROWSlnAdX2UKGgGaAloD0MIY0FhUKbR+r+UhpRSlGgVSzJoFkdAdTEz544ZM3V9lChoBmgJaA9DCHFYGvhRzfy/lIaUUpRoFUsyaBZHQHVHBRMvh611fZQoaAZoCWgPQwhgBmNEohD3v5SGlFKUaBVLMmgWR0B1Q47cO9WZdX2UKGgGaAloD0MIkC+hgsML+L+UhpRSlGgVSzJoFkdAdT6sCT2WZHV9lChoBmgJaA9DCDTVk/lH3/e/lIaUUpRoFUsyaBZHQHU6zCcf/3p1fZQoaAZoCWgPQwinyYy3ld73v5SGlFKUaBVLMmgWR0B1UQjQiRnwdX2UKGgGaAloD0MIHo1D/S5s9b+UhpRSlGgVSzJoFkdAdU2OZ9d/rnV9lChoBmgJaA9DCOvHJvkRv/6/lIaUUpRoFUsyaBZHQHVIrC3w1BN1fZQoaAZoCWgPQwiUiVsFMRD6v5SGlFKUaBVLMmgWR0B1RNCUornUdX2UKGgGaAloD0MI6N1YUBjU9r+UhpRSlGgVSzJoFkdAdVrTnaFmF3V9lChoBmgJaA9DCO2d0VYlUf2/lIaUUpRoFUsyaBZHQHVXYUzsQd11fZQoaAZoCWgPQwgT1PAtrPsAwJSGlFKUaBVLMmgWR0B1UoI0IkZ8dX2UKGgGaAloD0MISwUVVb/S+b+UhpRSlGgVSzJoFkdAdU6lVtGd7XV9lChoBmgJaA9DCNRIS+XtCPu/lIaUUpRoFUsyaBZHQHVla8cuJ1t1fZQoaAZoCWgPQwhz275H/TX2v5SGlFKUaBVLMmgWR0B1YfAaef7KdX2UKGgGaAloD0MISDSBIhYx97+UhpRSlGgVSzJoFkdAdV0L/0dzXHV9lChoBmgJaA9DCONSlba4xvW/lIaUUpRoFUsyaBZHQHVZLB0p3HJ1fZQoaAZoCWgPQwiLjA5Iwr77v5SGlFKUaBVLMmgWR0B1b++BYmsvdX2UKGgGaAloD0MIrtSzIJR3/r+UhpRSlGgVSzJoFkdAdWx2lVLi/HV9lChoBmgJaA9DCOs7vyhBP/m/lIaUUpRoFUsyaBZHQHVnk5Qxesx1fZQoaAZoCWgPQwg4pFGBk232v5SGlFKUaBVLMmgWR0B1Y77qIJqqdX2UKGgGaAloD0MI1LfM6bLY+L+UhpRSlGgVSzJoFkdAdXnfgJkXlHV9lChoBmgJaA9DCBTQRNjwNPy/lIaUUpRoFUsyaBZHQHV2ZRXOnl51fZQoaAZoCWgPQwh5knTN5Fv+v5SGlFKUaBVLMmgWR0B1cYE+xGDudX2UKGgGaAloD0MIHcpQFVNp+r+UhpRSlGgVSzJoFkdAdW2jBl+VknV9lChoBmgJaA9DCOo+AKlNHPW/lIaUUpRoFUsyaBZHQHWDheHBUJh1fZQoaAZoCWgPQwhYrrfNVMj3v5SGlFKUaBVLMmgWR0B1gAtUXHindX2UKGgGaAloD0MI/rRRnQ7k+b+UhpRSlGgVSzJoFkdAdXsnvDxb0XV9lChoBmgJaA9DCDQRNjy9kve/lIaUUpRoFUsyaBZHQHV3R9b5dnl1fZQoaAZoCWgPQwgGSZ9W0V/5v5SGlFKUaBVLMmgWR0B1jQk/r0J4dX2UKGgGaAloD0MI0765v3rc8r+UhpRSlGgVSzJoFkdAdYmNLDhtL3V9lChoBmgJaA9DCPQ1y2Wjc/a/lIaUUpRoFUsyaBZHQHWEqdUbT+h1fZQoaAZoCWgPQwjVzFoKSDv9v5SGlFKUaBVLMmgWR0B1gMtJ4B3idX2UKGgGaAloD0MI93ghHR4C/r+UhpRSlGgVSzJoFkdAdZcYuCf6GnV9lChoBmgJaA9DCO4/Mh06/fW/lIaUUpRoFUsyaBZHQHWTnXZoPCl1fZQoaAZoCWgPQwhCJhk5C/v8v5SGlFKUaBVLMmgWR0B1jr+l0o0AdX2UKGgGaAloD0MIIzDWNzA5/L+UhpRSlGgVSzJoFkdAdYrhzvJA+3V9lChoBmgJaA9DCEaWzLG8a/2/lIaUUpRoFUsyaBZHQHWg8f3evZB1fZQoaAZoCWgPQwgo1xTI7Kz5v5SGlFKUaBVLMmgWR0B1nXtKIznBdX2UKGgGaAloD0MIMswJ2uQw9b+UhpRSlGgVSzJoFkdAdZiYZl4C63V9lChoBmgJaA9DCMTsZdtpa/m/lIaUUpRoFUsyaBZHQHWUuVPepGZ1fZQoaAZoCWgPQwhrZFdaRioAwJSGlFKUaBVLMmgWR0B1sCzhP0qZdX2UKGgGaAloD0MIs82N6QlL9b+UhpRSlGgVSzJoFkdAdazLt/nW8XV9lChoBmgJaA9DCKN06V+Syv2/lIaUUpRoFUsyaBZHQHWn8AWBSUF1fZQoaAZoCWgPQwjsh9hg4ST5v5SGlFKUaBVLMmgWR0B1pC1F6RhddX2UKGgGaAloD0MIOltAaD28/r+UhpRSlGgVSzJoFkdAdcAEUCaJAXV9lChoBmgJaA9DCGngRzXst/q/lIaUUpRoFUsyaBZHQHW8kgjhUBJ1fZQoaAZoCWgPQwgT0hqDToj7v5SGlFKUaBVLMmgWR0B1t7QyAQQMdX2UKGgGaAloD0MI1cvvNJnx+r+UhpRSlGgVSzJoFkdAdbPbZvkzXXV9lChoBmgJaA9DCKhy2lNyzvm/lIaUUpRoFUsyaBZHQHXQuIInjQ11fZQoaAZoCWgPQwi/uipQi8H7v5SGlFKUaBVLMmgWR0B1zUSyt3fRdX2UKGgGaAloD0MIbJIf8StW/L+UhpRSlGgVSzJoFkdAdchqEOAiFHV9lChoBmgJaA9DCMMQOX093/S/lIaUUpRoFUsyaBZHQHXEkeQuEmJ1fZQoaAZoCWgPQwjF5XgFouf7v5SGlFKUaBVLMmgWR0B14rundfsvdX2UKGgGaAloD0MIymyQSUaO+L+UhpRSlGgVSzJoFkdAdd9KO1fE43V9lChoBmgJaA9DCO/i/bj9Mvu/lIaUUpRoFUsyaBZHQHXab5VOsT51fZQoaAZoCWgPQwhJnBVREz36v5SGlFKUaBVLMmgWR0B11plg+hXbdX2UKGgGaAloD0MIPBHEeTgB+r+UhpRSlGgVSzJoFkdAdfPo+wC8vnV9lChoBmgJaA9DCJdYGY183vq/lIaUUpRoFUsyaBZHQHXwdaMaS9x1fZQoaAZoCWgPQwhZFkz8UVT7v5SGlFKUaBVLMmgWR0B166cPOIIodX2UKGgGaAloD0MIe4fboWGx/L+UhpRSlGgVSzJoFkdAdefUvwmVq3V9lChoBmgJaA9DCNrJ4Ch59fa/lIaUUpRoFUsyaBZHQHYFDQzDXOJ1fZQoaAZoCWgPQwjMfAc/cQD3v5SGlFKUaBVLMmgWR0B2AZjvuw5edX2UKGgGaAloD0MIt/EnKhuW+7+UhpRSlGgVSzJoFkdAdfy+OOsDGXV9lChoBmgJaA9DCE/rNqj9Vv6/lIaUUpRoFUsyaBZHQHX45N9H+ZR1fZQoaAZoCWgPQwhfmbfqOlT5v5SGlFKUaBVLMmgWR0B2FFsKsuFpdX2UKGgGaAloD0MIZ5lFKLbC97+UhpRSlGgVSzJoFkdAdhDitq59VnV9lChoBmgJaA9DCEVkWMUbWfq/lIaUUpRoFUsyaBZHQHYMAogFHJ91fZQoaAZoCWgPQwilwAKYMnD4v5SGlFKUaBVLMmgWR0B2CCbx3FDOdX2UKGgGaAloD0MIVHB4QURq97+UhpRSlGgVSzJoFkdAdh3kGiYb83V9lChoBmgJaA9DCEbrqGqCqPq/lIaUUpRoFUsyaBZHQHYaaISDh991fZQoaAZoCWgPQwj/rs+c9Wn6v5SGlFKUaBVLMmgWR0B2FYUsWfsedX2UKGgGaAloD0MIZ5lFKLbC/L+UhpRSlGgVSzJoFkdAdhGlY2bXpXV9lChoBmgJaA9DCEcDeAskKP2/lIaUUpRoFUsyaBZHQHYn4IWxhUl1fZQoaAZoCWgPQwix3qgVpu/5v5SGlFKUaBVLMmgWR0B2JGcTakAQdX2UKGgGaAloD0MIYFlpUgo6+b+UhpRSlGgVSzJoFkdAdh+DTjNpunV9lChoBmgJaA9DCOutga0S7Pu/lIaUUpRoFUsyaBZHQHYbo6jnFHd1fZQoaAZoCWgPQwhxzLIngQ3+v5SGlFKUaBVLMmgWR0B2MXRCx/utdX2UKGgGaAloD0MItHOaBdpd9b+UhpRSlGgVSzJoFkdAdi355Z8rqnV9lChoBmgJaA9DCHqlLEMc6/m/lIaUUpRoFUsyaBZHQHYpF5Sm65J1fZQoaAZoCWgPQwiLi6NyE7Xyv5SGlFKUaBVLMmgWR0B2JTi83++/dX2UKGgGaAloD0MIKsk6HF3l9b+UhpRSlGgVSzJoFkdAdjtvi97F9HV9lChoBmgJaA9DCM5THXIzfADAlIaUUpRoFUsyaBZHQHY39AC4jKR1fZQoaAZoCWgPQwgVxEDXvsD0v5SGlFKUaBVLMmgWR0B2MxU5uIhydX2UKGgGaAloD0MI0H8PXrt0+L+UhpRSlGgVSzJoFkdAdi807bL2YnV9lChoBmgJaA9DCCRFZFjFm/2/lIaUUpRoFUsyaBZHQHZFSKrJbMZ1fZQoaAZoCWgPQwi8rl+wG7b4v5SGlFKUaBVLMmgWR0B2Qc0GeMAFdX2UKGgGaAloD0MIdsJLcOoD9b+UhpRSlGgVSzJoFkdAdjzpvgm7a3V9lChoBmgJaA9DCE5k5gKXB/2/lIaUUpRoFUsyaBZHQHY5CfUWl/J1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 5000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b984301ac5de3dab4989e961cea5debf856151d38a673a031b23730b0111b17
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd04e216e932a3def910de14468042002f6772631efd3ef59fb6486d456fccac
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd4cab90700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd4cab8cf40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679162001223883128, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyUZvPqg/F712ag0/yUZvPqg/F712ag0/yUZvPqg/F712ag0/yUZvPqg/F712ag0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXbblvv+3+L5Lt82/SVKEP7htDT/lahU/DAIbPvK5CT21DzG/vTd/P+3vxr7c8589lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjzJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjzJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjzJRm8+qD8XvXZqDT8YG6Y7KMxWuzrkhjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.23366846 -0.03692594 0.5524057 ]\n [ 0.23366846 -0.03692594 0.5524057 ]\n [ 0.23366846 -0.03692594 0.5524057 ]\n [ 0.23366846 -0.03692594 0.5524057 ]]", "desired_goal": "[[-0.44865695 -0.48577878 -1.6071562 ]\n [ 1.0337611 0.5524554 0.58366233]\n [ 0.151375 0.0336246 -0.6916459 ]\n [ 0.99694425 -0.38854924 0.07810184]]", "observation": "[[ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]\n [ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]\n [ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]\n [ 0.23366846 -0.03692594 0.5524057 0.00506915 -0.00327755 0.01646625]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACMoZvfAhFr4WoV8+msasuz22wz2EdKI9MOTCvfmpYL2UDY09FowRPvdHob0ou4I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03754619 -0.14661384 0.21838793]\n [-0.0052727 0.09556244 0.0793238 ]\n [-0.0951618 -0.0548496 0.06887355]\n [ 0.14213595 -0.07875054 0.25533414]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfEYiNIIN9b+UhpRSlIwBbJRLMowBdJRHQHUpgy6+WW11fZQoaAZoCWgPQwi46GSp9f71v5SGlFKUaBVLMmgWR0B1JgmNR3vAdX2UKGgGaAloD0MIY5gTtMnh+b+UhpRSlGgVSzJoFkdAdSErIo3JgnV9lChoBmgJaA9DCHyA7suZ7fu/lIaUUpRoFUsyaBZHQHUdTOTq0MR1fZQoaAZoCWgPQwhm3NRA8/n0v5SGlFKUaBVLMmgWR0B1M5YhdMTOdX2UKGgGaAloD0MIKbFre7vl+b+UhpRSlGgVSzJoFkdAdTAaScLBsXV9lChoBmgJaA9DCBGPxMvTOfi/lIaUUpRoFUsyaBZHQHUrNr0rbxp1fZQoaAZoCWgPQwgH7GrylHUAwJSGlFKUaBVLMmgWR0B1J1Yq5LAYdX2UKGgGaAloD0MIAwe0dAVb+r+UhpRSlGgVSzJoFkdAdT1xfOUt7XV9lChoBmgJaA9DCB4Wak3zTvi/lIaUUpRoFUsyaBZHQHU59k8Rtgt1fZQoaAZoCWgPQwj/7EeKyPD6v5SGlFKUaBVLMmgWR0B1NROWSlnAdX2UKGgGaAloD0MIY0FhUKbR+r+UhpRSlGgVSzJoFkdAdTEz544ZM3V9lChoBmgJaA9DCHFYGvhRzfy/lIaUUpRoFUsyaBZHQHVHBRMvh611fZQoaAZoCWgPQwhgBmNEohD3v5SGlFKUaBVLMmgWR0B1Q47cO9WZdX2UKGgGaAloD0MIkC+hgsML+L+UhpRSlGgVSzJoFkdAdT6sCT2WZHV9lChoBmgJaA9DCDTVk/lH3/e/lIaUUpRoFUsyaBZHQHU6zCcf/3p1fZQoaAZoCWgPQwinyYy3ld73v5SGlFKUaBVLMmgWR0B1UQjQiRnwdX2UKGgGaAloD0MIHo1D/S5s9b+UhpRSlGgVSzJoFkdAdU2OZ9d/rnV9lChoBmgJaA9DCOvHJvkRv/6/lIaUUpRoFUsyaBZHQHVIrC3w1BN1fZQoaAZoCWgPQwiUiVsFMRD6v5SGlFKUaBVLMmgWR0B1RNCUornUdX2UKGgGaAloD0MI6N1YUBjU9r+UhpRSlGgVSzJoFkdAdVrTnaFmF3V9lChoBmgJaA9DCO2d0VYlUf2/lIaUUpRoFUsyaBZHQHVXYUzsQd11fZQoaAZoCWgPQwgT1PAtrPsAwJSGlFKUaBVLMmgWR0B1UoI0IkZ8dX2UKGgGaAloD0MISwUVVb/S+b+UhpRSlGgVSzJoFkdAdU6lVtGd7XV9lChoBmgJaA9DCNRIS+XtCPu/lIaUUpRoFUsyaBZHQHVla8cuJ1t1fZQoaAZoCWgPQwhz275H/TX2v5SGlFKUaBVLMmgWR0B1YfAaef7KdX2UKGgGaAloD0MISDSBIhYx97+UhpRSlGgVSzJoFkdAdV0L/0dzXHV9lChoBmgJaA9DCONSlba4xvW/lIaUUpRoFUsyaBZHQHVZLB0p3HJ1fZQoaAZoCWgPQwiLjA5Iwr77v5SGlFKUaBVLMmgWR0B1b++BYmsvdX2UKGgGaAloD0MIrtSzIJR3/r+UhpRSlGgVSzJoFkdAdWx2lVLi/HV9lChoBmgJaA9DCOs7vyhBP/m/lIaUUpRoFUsyaBZHQHVnk5Qxesx1fZQoaAZoCWgPQwg4pFGBk232v5SGlFKUaBVLMmgWR0B1Y77qIJqqdX2UKGgGaAloD0MI1LfM6bLY+L+UhpRSlGgVSzJoFkdAdXnfgJkXlHV9lChoBmgJaA9DCBTQRNjwNPy/lIaUUpRoFUsyaBZHQHV2ZRXOnl51fZQoaAZoCWgPQwh5knTN5Fv+v5SGlFKUaBVLMmgWR0B1cYE+xGDudX2UKGgGaAloD0MIHcpQFVNp+r+UhpRSlGgVSzJoFkdAdW2jBl+VknV9lChoBmgJaA9DCOo+AKlNHPW/lIaUUpRoFUsyaBZHQHWDheHBUJh1fZQoaAZoCWgPQwhYrrfNVMj3v5SGlFKUaBVLMmgWR0B1gAtUXHindX2UKGgGaAloD0MI/rRRnQ7k+b+UhpRSlGgVSzJoFkdAdXsnvDxb0XV9lChoBmgJaA9DCDQRNjy9kve/lIaUUpRoFUsyaBZHQHV3R9b5dnl1fZQoaAZoCWgPQwgGSZ9W0V/5v5SGlFKUaBVLMmgWR0B1jQk/r0J4dX2UKGgGaAloD0MI0765v3rc8r+UhpRSlGgVSzJoFkdAdYmNLDhtL3V9lChoBmgJaA9DCPQ1y2Wjc/a/lIaUUpRoFUsyaBZHQHWEqdUbT+h1fZQoaAZoCWgPQwjVzFoKSDv9v5SGlFKUaBVLMmgWR0B1gMtJ4B3idX2UKGgGaAloD0MI93ghHR4C/r+UhpRSlGgVSzJoFkdAdZcYuCf6GnV9lChoBmgJaA9DCO4/Mh06/fW/lIaUUpRoFUsyaBZHQHWTnXZoPCl1fZQoaAZoCWgPQwhCJhk5C/v8v5SGlFKUaBVLMmgWR0B1jr+l0o0AdX2UKGgGaAloD0MIIzDWNzA5/L+UhpRSlGgVSzJoFkdAdYrhzvJA+3V9lChoBmgJaA9DCEaWzLG8a/2/lIaUUpRoFUsyaBZHQHWg8f3evZB1fZQoaAZoCWgPQwgo1xTI7Kz5v5SGlFKUaBVLMmgWR0B1nXtKIznBdX2UKGgGaAloD0MIMswJ2uQw9b+UhpRSlGgVSzJoFkdAdZiYZl4C63V9lChoBmgJaA9DCMTsZdtpa/m/lIaUUpRoFUsyaBZHQHWUuVPepGZ1fZQoaAZoCWgPQwhrZFdaRioAwJSGlFKUaBVLMmgWR0B1sCzhP0qZdX2UKGgGaAloD0MIs82N6QlL9b+UhpRSlGgVSzJoFkdAdazLt/nW8XV9lChoBmgJaA9DCKN06V+Syv2/lIaUUpRoFUsyaBZHQHWn8AWBSUF1fZQoaAZoCWgPQwjsh9hg4ST5v5SGlFKUaBVLMmgWR0B1pC1F6RhddX2UKGgGaAloD0MIOltAaD28/r+UhpRSlGgVSzJoFkdAdcAEUCaJAXV9lChoBmgJaA9DCGngRzXst/q/lIaUUpRoFUsyaBZHQHW8kgjhUBJ1fZQoaAZoCWgPQwgT0hqDToj7v5SGlFKUaBVLMmgWR0B1t7QyAQQMdX2UKGgGaAloD0MI1cvvNJnx+r+UhpRSlGgVSzJoFkdAdbPbZvkzXXV9lChoBmgJaA9DCKhy2lNyzvm/lIaUUpRoFUsyaBZHQHXQuIInjQ11fZQoaAZoCWgPQwi/uipQi8H7v5SGlFKUaBVLMmgWR0B1zUSyt3fRdX2UKGgGaAloD0MIbJIf8StW/L+UhpRSlGgVSzJoFkdAdchqEOAiFHV9lChoBmgJaA9DCMMQOX093/S/lIaUUpRoFUsyaBZHQHXEkeQuEmJ1fZQoaAZoCWgPQwjF5XgFouf7v5SGlFKUaBVLMmgWR0B14rundfsvdX2UKGgGaAloD0MIymyQSUaO+L+UhpRSlGgVSzJoFkdAdd9KO1fE43V9lChoBmgJaA9DCO/i/bj9Mvu/lIaUUpRoFUsyaBZHQHXab5VOsT51fZQoaAZoCWgPQwhJnBVREz36v5SGlFKUaBVLMmgWR0B11plg+hXbdX2UKGgGaAloD0MIPBHEeTgB+r+UhpRSlGgVSzJoFkdAdfPo+wC8vnV9lChoBmgJaA9DCJdYGY183vq/lIaUUpRoFUsyaBZHQHXwdaMaS9x1fZQoaAZoCWgPQwhZFkz8UVT7v5SGlFKUaBVLMmgWR0B166cPOIIodX2UKGgGaAloD0MIe4fboWGx/L+UhpRSlGgVSzJoFkdAdefUvwmVq3V9lChoBmgJaA9DCNrJ4Ch59fa/lIaUUpRoFUsyaBZHQHYFDQzDXOJ1fZQoaAZoCWgPQwjMfAc/cQD3v5SGlFKUaBVLMmgWR0B2AZjvuw5edX2UKGgGaAloD0MIt/EnKhuW+7+UhpRSlGgVSzJoFkdAdfy+OOsDGXV9lChoBmgJaA9DCE/rNqj9Vv6/lIaUUpRoFUsyaBZHQHX45N9H+ZR1fZQoaAZoCWgPQwhfmbfqOlT5v5SGlFKUaBVLMmgWR0B2FFsKsuFpdX2UKGgGaAloD0MIZ5lFKLbC97+UhpRSlGgVSzJoFkdAdhDitq59VnV9lChoBmgJaA9DCEVkWMUbWfq/lIaUUpRoFUsyaBZHQHYMAogFHJ91fZQoaAZoCWgPQwilwAKYMnD4v5SGlFKUaBVLMmgWR0B2CCbx3FDOdX2UKGgGaAloD0MIVHB4QURq97+UhpRSlGgVSzJoFkdAdh3kGiYb83V9lChoBmgJaA9DCEbrqGqCqPq/lIaUUpRoFUsyaBZHQHYaaISDh991fZQoaAZoCWgPQwj/rs+c9Wn6v5SGlFKUaBVLMmgWR0B2FYUsWfsedX2UKGgGaAloD0MIZ5lFKLbC/L+UhpRSlGgVSzJoFkdAdhGlY2bXpXV9lChoBmgJaA9DCEcDeAskKP2/lIaUUpRoFUsyaBZHQHYn4IWxhUl1fZQoaAZoCWgPQwix3qgVpu/5v5SGlFKUaBVLMmgWR0B2JGcTakAQdX2UKGgGaAloD0MIYFlpUgo6+b+UhpRSlGgVSzJoFkdAdh+DTjNpunV9lChoBmgJaA9DCOutga0S7Pu/lIaUUpRoFUsyaBZHQHYbo6jnFHd1fZQoaAZoCWgPQwhxzLIngQ3+v5SGlFKUaBVLMmgWR0B2MXRCx/utdX2UKGgGaAloD0MItHOaBdpd9b+UhpRSlGgVSzJoFkdAdi355Z8rqnV9lChoBmgJaA9DCHqlLEMc6/m/lIaUUpRoFUsyaBZHQHYpF5Sm65J1fZQoaAZoCWgPQwiLi6NyE7Xyv5SGlFKUaBVLMmgWR0B2JTi83++/dX2UKGgGaAloD0MIKsk6HF3l9b+UhpRSlGgVSzJoFkdAdjtvi97F9HV9lChoBmgJaA9DCM5THXIzfADAlIaUUpRoFUsyaBZHQHY39AC4jKR1fZQoaAZoCWgPQwgVxEDXvsD0v5SGlFKUaBVLMmgWR0B2MxU5uIhydX2UKGgGaAloD0MI0H8PXrt0+L+UhpRSlGgVSzJoFkdAdi807bL2YnV9lChoBmgJaA9DCCRFZFjFm/2/lIaUUpRoFUsyaBZHQHZFSKrJbMZ1fZQoaAZoCWgPQwi8rl+wG7b4v5SGlFKUaBVLMmgWR0B2Qc0GeMAFdX2UKGgGaAloD0MIdsJLcOoD9b+UhpRSlGgVSzJoFkdAdjzpvgm7a3V9lChoBmgJaA9DCE5k5gKXB/2/lIaUUpRoFUsyaBZHQHY5CfUWl/J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (817 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.3652110083727167, "std_reward": 0.22927466820389827, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T17:59:32.496259"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c67d5ebc13c8bdc6848cf169ba9a7aa6ff24dd8fd15a97f0c6e9f75978a8392
3
+ size 3056