{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff565b6200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff565b6290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff565b6320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff565b63b0>", "_build": "<function ActorCriticPolicy._build at 0x7eff565b6440>", "forward": "<function ActorCriticPolicy.forward at 0x7eff565b64d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff565b6560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff565b65f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff565b6680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff565b6710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff565b67a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff565b6830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eff565c4180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711464527186878687, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMfHDwULJy61lXwOWB09TTFR1+6FbQKuQAAgD8AAIA/msf0PKuqqz3xQTE9gh91vgz4c7ouSdy8AAAAAAAAAADmBTY9wykzul7jXTotfAQ1CSOGOgwDg7kAAIA/AACAP9qCgb3mT7U/Au4Vv8I5wb0HiIa8WrZavgAAAAAAAAAAs/oTPfY0MrrpZEW7TRyMtoHMQjrFIVg6AACAPwAAgD+acZM97FmNuTqI2bvGRqk2oPFQuwAeHbYAAIA/AACAPzPYoL38pU4+9uJ3PYfLcL6eQ9G766b/vAAAAAAAAAAA8wmxvTj/lrs2ykw8glqCPJsm7TxGTV+9AACAPwAAgD8NpNY9du7jPiuBWb1C8ou+r+iNPYsBlD0AAAAAAAAAAObEUj0phDK6y9OjOkaIpTUSoi87HIzCuQAAgD8AAIA/Zq+1vI/7C7z1vl+8mregvB+Pcz2atoY9AACAPwAAgD8ziVU84fq/uNBZdrgrF5Oy0ifbu3P8kTcAAIA/AACAPwA2lD2Paie6DRvOOtUQB7UKq5m7FrnwuQAAgD8AAIA/5nq4PR9t2LnSfg24xagTsxO1ZDua3ic3AACAPwAAgD8AABk5wyFZugBR2zg1VsIz342gOpkVAbgAAIA/AACAP5oJa7x7/pu6axK6OdosNzZNQag5JWfXuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGpDdQwblzWMAWyUTegDjAF0lEdAmdN44EOiFnV9lChoBkdAYdPC1qnFYWgHTegDaAhHQJnUODPGACp1fZQoaAZHQGbndGRV6u5oB03oA2gIR0CZ1hHHWBjGdX2UKGgGR0BjnaxoqTbGaAdN6ANoCEdAmdeJ7sv7FnV9lChoBkdAaJFNxEORT2gHTegDaAhHQJnZAKF7D2t1fZQoaAZHQFEUazu4PPNoB0vQaAhHQJnZi6kIomZ1fZQoaAZHQGdeCYTj/+9oB03oA2gIR0CZ20XD3ueCdX2UKGgGR0BlRfQWvbGnaAdN6ANoCEdAmd4YqPOpsHV9lChoBkdAYVLKISDh+GgHTegDaAhHQJnmHnhbW3B1fZQoaAZHQGGMYekpI+ZoB03oA2gIR0CZ7oZDiOvMdX2UKGgGR0BlI2kSElE7aAdN6ANoCEdAmgVpvkzXSXV9lChoBkdAYZmUnG828GgHTegDaAhHQJoIugElme11fZQoaAZHQGLQ/bTMJQdoB03oA2gIR0CaCZE3Kji5dX2UKGgGR0BkaWhK15SnaAdN6ANoCEdAmgvTIeYD1XV9lChoBkdAZ0aLmZE2HmgHTegDaAhHQJohBCqp97Z1fZQoaAZHQGRkIMKCxu9oB03oA2gIR0CaJm4EwFkhdX2UKGgGR0BlOZgiNbTuaAdN6ANoCEdAmidq/mDDj3V9lChoBkdAYWfcoH9m6GgHTegDaAhHQJooI91U2k11fZQoaAZHQGFG5N47ihpoB03oA2gIR0CaKikWhysCdX2UKGgGR0Bm5M+eOGTLaAdN6ANoCEdAmiwzF2mpEXV9lChoBkdAZpxE4Nqgy2gHTegDaAhHQJouf+aScLB1fZQoaAZHQGHHYOtnwodoB03oA2gIR0CaLyhgVoHtdX2UKGgGR0BmmB1DBuXNaAdN6ANoCEdAmjFjLW7OFHV9lChoBkdAYj4KWLP2PGgHTegDaAhHQJo0wcPvrnl1fZQoaAZHQHIjs8gZCOZoB00nAWgIR0CaN8ieumrKdX2UKGgGR0BGBmjCYTkAaAdL8WgIR0CaOhbeMyaedX2UKGgGR0Bj4p4MWoFWaAdN6ANoCEdAmjvDER8MNXV9lChoBkdAatKH+IdlumgHTegDaAhHQJpDRJGvwE11fZQoaAZHQGfMhuwX669oB03oA2gIR0CaVlBomG/OdX2UKGgGR0BiTcy31BdEaAdN6ANoCEdAmllSa3I+4nV9lChoBkdAYtzY9Pk7wWgHTegDaAhHQJpaQFEAo5R1fZQoaAZHQGd5O3lS0jVoB03oA2gIR0CaXNFZPl+3dX2UKGgGR0BoTzaTOgQIaAdN6ANoCEdAml8T+zdDY3V9lChoBkdAZrOYUnG83GgHTegDaAhHQJp6QgTyrgh1fZQoaAZHQGMUpe3QUpNoB03oA2gIR0CaexHMlkYodX2UKGgGR0Bl/+40/GEPaAdN6ANoCEdAmn0RZuAI6nV9lChoBkdAZ5OYdhiLEWgHTegDaAhHQJqAT5xiobZ1fZQoaAZHQF+WAwfyPMloB03oA2gIR0CagOrAgxJvdX2UKGgGR0BlJX31zySWaAdN6ANoCEdAmoKBvm5lOHV9lChoBkdAZ42wGnn+ymgHTegDaAhHQJqFU6GQCCB1fZQoaAZHQGA3a4tpVS5oB03oA2gIR0CaiHN4JNTMdX2UKGgGR0BjYut2cJ+laAdN6ANoCEdAmorAr6LwWnV9lChoBkdAaesFAVwgkmgHTegDaAhHQJqMcYZVGTd1fZQoaAZHQGhvA9/z8P5oB03oA2gIR0CaleHhjvuxdX2UKGgGR0Bhi683++/QaAdN6ANoCEdAmqfuIyj59HV9lChoBkdAZLJGIbfgrGgHTegDaAhHQJqrH/sE7nx1fZQoaAZHQGbaGJvYODtoB03oA2gIR0Caq/RArxy5dX2UKGgGR0BlvvjENvwWaAdN6ANoCEdAmq5i5mRNh3V9lChoBkdAaBpDpkf9xmgHTegDaAhHQJqwEuvllsh1fZQoaAZHQGJWDU3GXHBoB03oA2gIR0CazXI42jwhdX2UKGgGR0BpMd1Oj7AMaAdN6ANoCEdAms4oqoZQ53V9lChoBkdAXN8W/JvHcWgHTegDaAhHQJrQIOwxFiN1fZQoaAZHQGSLjPOY6XBoB03oA2gIR0Ca02sTFl06dX2UKGgGR0BoGBtLteD4aAdN6ANoCEdAmtQG5c1O03V9lChoBkdAYxqFYdQwbmgHTegDaAhHQJrV4SeyzHF1fZQoaAZHQGPGy3LFGXpoB03oA2gIR0Ca2NmygPEsdX2UKGgGR0BiIs8aGYa6aAdN6ANoCEdAmtxOkgwGnnV9lChoBkdATbii22G7BmgHS8FoCEdAmt3tbxEv03V9lChoBkdAYeEeLehwl2gHTegDaAhHQJre0JXyRSx1fZQoaAZHQGYSVTaTOgRoB03oA2gIR0Ca4H9lVcUudX2UKGgGR0Bnh+bI91U3aAdN6ANoCEdAmueSOvMbFXV9lChoBkdAYoCbLEDQq2gHTegDaAhHQJr9NMIu5Bl1fZQoaAZHQGeOhpHqeK9oB03oA2gIR0CbAJoUi6g/dX2UKGgGR0Bjk8kY4yXVaAdN6ANoCEdAmwFpv99+gHV9lChoBkdAYvDTGYKIBWgHTegDaAhHQJsD228Zk091fZQoaAZHQGhMMJIDoyNoB03oA2gIR0CbBaQoTfzjdX2UKGgGR0BjKeFrVOKwaAdN6ANoCEdAmx/Q1aW5Y3V9lChoBkdAZ1b15B1LamgHTegDaAhHQJsg+wmmce91fZQoaAZHQGcYW0AtFrloB03oA2gIR0CbI7u7YkE+dX2UKGgGR0BmTaji4rjHaAdN6ANoCEdAmylm8ujASHV9lChoBkdAYRSBtDUmUmgHTegDaAhHQJsrRI6Kcd51fZQoaAZHQGIPbz06HTJoB03oA2gIR0CbLnjUd7v5dX2UKGgGR0BgJKSvC/GmaAdN6ANoCEdAmzIUUXYUWXV9lChoBkdAaBX46fapP2gHTegDaAhHQJszz6dlNDd1fZQoaAZHQGUdcaOxSpBoB03oA2gIR0CbNLeHBUJfdX2UKGgGR0BppPnEETxoaAdN6ANoCEdAmzZXIyTINnV9lChoBkdAZFmNVinYQWgHTegDaAhHQJs84fCAMDx1fZQoaAZHQHD5kngHeJpoB03RAWgIR0CbPt0Re1KHdX2UKGgGR0BnJqUVzp5eaAdN6ANoCEdAm02UGqxTsXV9lChoBkdAZepolD4QBmgHTegDaAhHQJtQwXMyJsR1fZQoaAZHQGb6mFi8WbhoB03oA2gIR0CbUeWz4UN8dX2UKGgGR0Bnl9HBk7OnaAdN6ANoCEdAm1TubutwJnV9lChoBkdAZ5vhXr+o+GgHTegDaAhHQJtXNEc81XN1fZQoaAZHQGRD7zK9wm5oB03oA2gIR0Cbcdq8DjiodX2UKGgGR0BjL3NxEORUaAdN6ANoCEdAm3KVyzXz2HV9lChoBkdAZ/c6FuejEmgHTegDaAhHQJt4VNi6QNl1fZQoaAZHQGegB+nZTQ5oB03oA2gIR0CbejV8Ti84dX2UKGgGR0BpsuiSJTESaAdN6ANoCEdAm32Gys0YTHV9lChoBkdAYZ5g75mAb2gHTegDaAhHQJuBMl6Z6Ut1fZQoaAZHQF8YL3sXzlNoB03oA2gIR0Cbg5aC+UQkdX2UKGgGR0BifQlOXVslaAdN6ANoCEdAm4Tlsxfv4XV9lChoBkdAZB5Zr56+nWgHTegDaAhHQJuHR+kP+XJ1fZQoaAZHQGGMP1L8JldoB03oA2gIR0Cbjtf6oESvdX2UKGgGR0Bocc4iosI3aAdN6ANoCEdAm5EuAZsKs3V9lChoBkdAaFCP/aQFLWgHTegDaAhHQJuhO2x6fJ51fZQoaAZHQGKzcTJyQxNoB03oA2gIR0CbpFnqmj0udX2UKGgGR0BeRqw6hg3MaAdN6ANoCEdAm6UrAYYR/XV9lChoBkdAZoeDSw4bTGgHTegDaAhHQJunbZdv8651fZQoaAZHQGbDn752yLRoB03oA2gIR0CbqS1wHZ9NdX2UKGgGR0BhRM72criEaAdN6ANoCEdAm68jLB9Cu3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |