Update README.md
Browse files
README.md
CHANGED
|
@@ -1,20 +1,21 @@
|
|
| 1 |
---
|
| 2 |
-
language:
|
| 3 |
-
- en
|
| 4 |
-
- zh
|
| 5 |
tags:
|
| 6 |
- fp8
|
| 7 |
-
-
|
| 8 |
-
- dynamic
|
| 9 |
-
- vision-language
|
| 10 |
-
- multimodal
|
| 11 |
- vllm
|
| 12 |
- llm-compressor
|
| 13 |
- internvl3.5
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
pipeline_tag: image-text-to-text
|
| 16 |
inference: false
|
| 17 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
---
|
| 19 |
|
| 20 |
# InternVL3.5 38B FP8
|
|
@@ -41,7 +42,22 @@ The quantization process uses a specialized recipe that preserves the model's co
|
|
| 41 |
| **Quantization Library** | [LLM Compressor](https://github.com/vllm-project/llm-compressor) v0.7.1 |
|
| 42 |
| **Quantized By** | [brandonbeiler](https://huggingface.co/brandonbeiler) |
|
| 43 |
|
| 44 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
The following snippet demonstrates inference using the vLLM library.
|
| 47 |
|
|
@@ -69,6 +85,8 @@ response = model.generate(prompt, sampling_params)
|
|
| 69 |
print(response[0].outputs[0].text)
|
| 70 |
```
|
| 71 |
|
|
|
|
|
|
|
| 72 |
## Technical Specifications
|
| 73 |
|
| 74 |
### Hardware Requirements
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- fp8
|
| 4 |
+
- fp8-dynamic
|
|
|
|
|
|
|
|
|
|
| 5 |
- vllm
|
| 6 |
- llm-compressor
|
| 7 |
- internvl3.5
|
| 8 |
+
- internvl
|
| 9 |
+
language:
|
| 10 |
+
- multilingual
|
| 11 |
pipeline_tag: image-text-to-text
|
| 12 |
inference: false
|
| 13 |
license: mit
|
| 14 |
+
base_model:
|
| 15 |
+
- OpenGVLab/InternVL3_5-38B
|
| 16 |
+
datasets:
|
| 17 |
+
- OpenGVLab/MMPR-v1.2
|
| 18 |
+
library_name: vllm
|
| 19 |
---
|
| 20 |
|
| 21 |
# InternVL3.5 38B FP8
|
|
|
|
| 42 |
| **Quantization Library** | [LLM Compressor](https://github.com/vllm-project/llm-compressor) v0.7.1 |
|
| 43 |
| **Quantized By** | [brandonbeiler](https://huggingface.co/brandonbeiler) |
|
| 44 |
|
| 45 |
+
## With vLLM OpenAI-Compatible Server
|
| 46 |
+
|
| 47 |
+
You can serve the model using vLLM's OpenAI-compatible API server.
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
python -m vllm.entrypoints.openai.api_server \
|
| 51 |
+
--model brandonbeiler/InternVL3_5-38B-FP8-Dynamic \
|
| 52 |
+
--quantization compressed-tensors \
|
| 53 |
+
--served-model-name internvl3_5-38b \
|
| 54 |
+
--reasoning-parser: qwen3 \
|
| 55 |
+
--trust-remote-code \
|
| 56 |
+
--max-model-len 32768 \
|
| 57 |
+
--tensor-parallel-size 1 # Adjust based on your GPU setup
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Usage with vLLM in Python
|
| 61 |
|
| 62 |
The following snippet demonstrates inference using the vLLM library.
|
| 63 |
|
|
|
|
| 85 |
print(response[0].outputs[0].text)
|
| 86 |
```
|
| 87 |
|
| 88 |
+
|
| 89 |
+
|
| 90 |
## Technical Specifications
|
| 91 |
|
| 92 |
### Hardware Requirements
|