bpavlsh commited on
Commit
40c1db0
·
verified ·
1 Parent(s): 8a18239

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -34,26 +34,26 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
34
  from peft import PeftModel
35
  from huggingface_hub import login
36
 
37
- #Login to Huggingface to load Mistral LLM
38
  login("Huggingface access token")
39
 
40
- model_id = "mistralai/Mistral-7B-Instruct-v0.1"
41
  peft_model_name="bpavlsh/Mistral-Fake-News-Detection"
42
 
43
- tokenizer = AutoTokenizer.from_pretrained(model_id)
44
  base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
45
  device_map="auto", torch_dtype="auto")
46
  model = PeftModel.from_pretrained(base_model, peft_model_name)
47
 
48
- text=""" News text for analysis, from 1Kb to 10Kb """
49
 
50
- prompt = f"""<s>[INST] <<SYS>>
51
  You are an expert in analyzing news for fake content, propaganda, and offensive language.
52
  <</SYS>>
53
 
54
- Please analyze the following text: {text} [/INST]"""
55
 
56
- inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
57
  output = model.generate(**inputs, max_new_tokens=1500)
58
  output_result=tokenizer.decode(output[0], skip_special_tokens=True)
59
  result=output_result.split('[/INST]')[1]
 
34
  from peft import PeftModel
35
  from huggingface_hub import login
36
 
37
+ #Login to Huggingface to load Mistral LLM
38
  login("Huggingface access token")
39
 
40
+ model_id = "mistralai/Mistral-7B-Instruct-v0.1"
41
  peft_model_name="bpavlsh/Mistral-Fake-News-Detection"
42
 
43
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
44
  base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
45
  device_map="auto", torch_dtype="auto")
46
  model = PeftModel.from_pretrained(base_model, peft_model_name)
47
 
48
+ text=""" News text for analysis, from 1Kb to 10Kb """
49
 
50
+ prompt = f"""<s>[INST] <<SYS>>
51
  You are an expert in analyzing news for fake content, propaganda, and offensive language.
52
  <</SYS>>
53
 
54
+ Please analyze the following text: {text} [/INST]"""
55
 
56
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
57
  output = model.generate(**inputs, max_new_tokens=1500)
58
  output_result=tokenizer.decode(output[0], skip_special_tokens=True)
59
  result=output_result.split('[/INST]')[1]