bonurtek commited on
Commit
e84715a
·
verified ·
1 Parent(s): fb930da

End of training

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/flan-t5-small
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: flan-t5-small-hallucination-text-classification
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # flan-t5-small-hallucination-text-classification
20
+
21
+ This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6364
24
+ - Precision: 0.7374
25
+ - Recall: 0.7420
26
+ - F1: 0.7370
27
+ - Accuracy: 0.7420
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0003
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 2
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.9155 | 0.2008 | 100 | 0.8142 | 0.6260 | 0.6365 | 0.6213 | 0.6365 |
59
+ | 0.777 | 0.4016 | 200 | 0.7090 | 0.7062 | 0.7098 | 0.7003 | 0.7098 |
60
+ | 0.7625 | 0.6024 | 300 | 0.6595 | 0.7365 | 0.7299 | 0.7212 | 0.7299 |
61
+ | 0.7136 | 0.8032 | 400 | 0.7185 | 0.7084 | 0.7108 | 0.7090 | 0.7108 |
62
+ | 0.6807 | 1.0040 | 500 | 0.7207 | 0.7216 | 0.7008 | 0.7066 | 0.7008 |
63
+ | 0.6522 | 1.2048 | 600 | 0.6221 | 0.7340 | 0.7329 | 0.7321 | 0.7329 |
64
+ | 0.6355 | 1.4056 | 700 | 0.6216 | 0.7358 | 0.7400 | 0.7368 | 0.7400 |
65
+ | 0.6074 | 1.6064 | 800 | 0.6261 | 0.7463 | 0.7490 | 0.7462 | 0.7490 |
66
+ | 0.5999 | 1.8072 | 900 | 0.6364 | 0.7374 | 0.7420 | 0.7370 | 0.7420 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.41.2
72
+ - Pytorch 2.3.0+cu121
73
+ - Datasets 2.19.1
74
+ - Tokenizers 0.19.1