End of training
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/flan-t5-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: flan-t5-small-hallucination-text-classification
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# flan-t5-small-hallucination-text-classification
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6364
|
24 |
+
- Precision: 0.7374
|
25 |
+
- Recall: 0.7420
|
26 |
+
- F1: 0.7370
|
27 |
+
- Accuracy: 0.7420
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0003
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 2
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.9155 | 0.2008 | 100 | 0.8142 | 0.6260 | 0.6365 | 0.6213 | 0.6365 |
|
59 |
+
| 0.777 | 0.4016 | 200 | 0.7090 | 0.7062 | 0.7098 | 0.7003 | 0.7098 |
|
60 |
+
| 0.7625 | 0.6024 | 300 | 0.6595 | 0.7365 | 0.7299 | 0.7212 | 0.7299 |
|
61 |
+
| 0.7136 | 0.8032 | 400 | 0.7185 | 0.7084 | 0.7108 | 0.7090 | 0.7108 |
|
62 |
+
| 0.6807 | 1.0040 | 500 | 0.7207 | 0.7216 | 0.7008 | 0.7066 | 0.7008 |
|
63 |
+
| 0.6522 | 1.2048 | 600 | 0.6221 | 0.7340 | 0.7329 | 0.7321 | 0.7329 |
|
64 |
+
| 0.6355 | 1.4056 | 700 | 0.6216 | 0.7358 | 0.7400 | 0.7368 | 0.7400 |
|
65 |
+
| 0.6074 | 1.6064 | 800 | 0.6261 | 0.7463 | 0.7490 | 0.7462 | 0.7490 |
|
66 |
+
| 0.5999 | 1.8072 | 900 | 0.6364 | 0.7374 | 0.7420 | 0.7370 | 0.7420 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.41.2
|
72 |
+
- Pytorch 2.3.0+cu121
|
73 |
+
- Datasets 2.19.1
|
74 |
+
- Tokenizers 0.19.1
|