Training in progress, step 305, checkpoint
Browse files- checkpoint-305/1_AdvancedWeightedPooling/config.json +12 -0
- checkpoint-305/1_AdvancedWeightedPooling/pytorch_model.bin +3 -0
- checkpoint-305/README.md +1180 -0
- checkpoint-305/added_tokens.json +3 -0
- checkpoint-305/config.json +35 -0
- checkpoint-305/config_sentence_transformers.json +10 -0
- checkpoint-305/modules.json +14 -0
- checkpoint-305/optimizer.pt +3 -0
- checkpoint-305/pytorch_model.bin +3 -0
- checkpoint-305/rng_state.pth +3 -0
- checkpoint-305/scheduler.pt +3 -0
- checkpoint-305/sentence_bert_config.json +4 -0
- checkpoint-305/special_tokens_map.json +15 -0
- checkpoint-305/spm.model +3 -0
- checkpoint-305/tokenizer.json +0 -0
- checkpoint-305/tokenizer_config.json +58 -0
- checkpoint-305/trainer_state.json +2257 -0
- checkpoint-305/training_args.bin +3 -0
checkpoint-305/1_AdvancedWeightedPooling/config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 768,
|
| 3 |
+
"num_heads": 4,
|
| 4 |
+
"dropout": 0.05,
|
| 5 |
+
"bias": true,
|
| 6 |
+
"gate_min": 0.1,
|
| 7 |
+
"gate_max": 0.9,
|
| 8 |
+
"gate_dropout": 0.1,
|
| 9 |
+
"dropout_gate_open": 0.05,
|
| 10 |
+
"dropout_gate_close": 0.05,
|
| 11 |
+
"CLS_self_attn": 0
|
| 12 |
+
}
|
checkpoint-305/1_AdvancedWeightedPooling/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:431d905931e29442c165bd526667d99310cd89a28b0f15a6b3f5c174b5ac4946
|
| 3 |
+
size 18937587
|
checkpoint-305/README.md
ADDED
|
@@ -0,0 +1,1180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/deberta-v3-small
|
| 3 |
+
library_name: sentence-transformers
|
| 4 |
+
metrics:
|
| 5 |
+
- pearson_cosine
|
| 6 |
+
- spearman_cosine
|
| 7 |
+
- pearson_manhattan
|
| 8 |
+
- spearman_manhattan
|
| 9 |
+
- pearson_euclidean
|
| 10 |
+
- spearman_euclidean
|
| 11 |
+
- pearson_dot
|
| 12 |
+
- spearman_dot
|
| 13 |
+
- pearson_max
|
| 14 |
+
- spearman_max
|
| 15 |
+
- cosine_accuracy
|
| 16 |
+
- cosine_accuracy_threshold
|
| 17 |
+
- cosine_f1
|
| 18 |
+
- cosine_f1_threshold
|
| 19 |
+
- cosine_precision
|
| 20 |
+
- cosine_recall
|
| 21 |
+
- cosine_ap
|
| 22 |
+
- dot_accuracy
|
| 23 |
+
- dot_accuracy_threshold
|
| 24 |
+
- dot_f1
|
| 25 |
+
- dot_f1_threshold
|
| 26 |
+
- dot_precision
|
| 27 |
+
- dot_recall
|
| 28 |
+
- dot_ap
|
| 29 |
+
- manhattan_accuracy
|
| 30 |
+
- manhattan_accuracy_threshold
|
| 31 |
+
- manhattan_f1
|
| 32 |
+
- manhattan_f1_threshold
|
| 33 |
+
- manhattan_precision
|
| 34 |
+
- manhattan_recall
|
| 35 |
+
- manhattan_ap
|
| 36 |
+
- euclidean_accuracy
|
| 37 |
+
- euclidean_accuracy_threshold
|
| 38 |
+
- euclidean_f1
|
| 39 |
+
- euclidean_f1_threshold
|
| 40 |
+
- euclidean_precision
|
| 41 |
+
- euclidean_recall
|
| 42 |
+
- euclidean_ap
|
| 43 |
+
- max_accuracy
|
| 44 |
+
- max_accuracy_threshold
|
| 45 |
+
- max_f1
|
| 46 |
+
- max_f1_threshold
|
| 47 |
+
- max_precision
|
| 48 |
+
- max_recall
|
| 49 |
+
- max_ap
|
| 50 |
+
pipeline_tag: sentence-similarity
|
| 51 |
+
tags:
|
| 52 |
+
- sentence-transformers
|
| 53 |
+
- sentence-similarity
|
| 54 |
+
- feature-extraction
|
| 55 |
+
- generated_from_trainer
|
| 56 |
+
- dataset_size:32500
|
| 57 |
+
- loss:GISTEmbedLoss
|
| 58 |
+
widget:
|
| 59 |
+
- source_sentence: A picture of a white gas range with figurines above.
|
| 60 |
+
sentences:
|
| 61 |
+
- A nerdy woman brushing her teeth with a friend nearby.
|
| 62 |
+
- a white stove turned off with a digital clock
|
| 63 |
+
- The plasma membrane also contains other molecules, primarily other lipids and
|
| 64 |
+
proteins. The green molecules in Figure above , for example, are the lipid cholesterol.
|
| 65 |
+
Molecules of cholesterol help the plasma membrane keep its shape. Many of the
|
| 66 |
+
proteins in the plasma membrane assist other substances in crossing the membrane.
|
| 67 |
+
- source_sentence: who makes the kentucky derby garland of roses
|
| 68 |
+
sentences:
|
| 69 |
+
- Accrington strengthened their position in the play-off places with a hard-fought
|
| 70 |
+
win over struggling Dagenham.
|
| 71 |
+
- "tidal energy can be used to produce electricity. Ocean thermal is energy derived\
|
| 72 |
+
\ from waves and also from tidal waves. \n Ocean thermal energy can be used to\
|
| 73 |
+
\ produce electricity."
|
| 74 |
+
- Kentucky Derby Trophy The Kroger Company has been the official florist of the
|
| 75 |
+
Kentucky Derby since 1987. After taking over the duties from the Kingsley Walker
|
| 76 |
+
florist, Kroger began constructing the prestigious garland in one of its local
|
| 77 |
+
stores for the public to view on Derby Eve. The preservation of the garland and
|
| 78 |
+
crowds of spectators watching its construction are a testament to the prestige
|
| 79 |
+
and mystique of the Garland of Roses.
|
| 80 |
+
- source_sentence: what is the difference between a general sense and a special sense?
|
| 81 |
+
sentences:
|
| 82 |
+
- 'Ian Curtis ( of Touching from a distance) Ian Kevin Curtis was an English musician
|
| 83 |
+
and singer-songwriter. He is best known as the lead singer and lyricist of the
|
| 84 |
+
post-punk band Joy Division. Joy Division released its debut album, Unknown Pleasures,
|
| 85 |
+
in 1979 and recorded its follow-up, Closer, in 1980. Curtis, who suffered from
|
| 86 |
+
epilepsy and depression, committed suicide on 18 May 1980, on the eve of Joy Division''s
|
| 87 |
+
first North American tour, resulting in the band''s dissolution and the subsequent
|
| 88 |
+
formation of New Order. Curtis was known for his baritone voice, dance style,
|
| 89 |
+
and songwriting filled with imagery of desolation, emptiness and alienation. In
|
| 90 |
+
1995, Curtis''s widow Deborah published Touching from a Distance: Ian Curtis and
|
| 91 |
+
Joy Division, a biography of the singer. His life and death Ian Kevin Curtis was
|
| 92 |
+
an English musician and singer-songwriter. He is best known as the lead singer
|
| 93 |
+
and lyricist of the post-punk band Joy Division. Joy Division released its debut
|
| 94 |
+
album, Unknown Pleasures, in 1979 and recorded its follow-up, Closer, in 1980.
|
| 95 |
+
Curtis, who suffered from epilepsy and depression, committed suicide on 18 May
|
| 96 |
+
1980, on the eve of Joy Division''s first North American tour, resulting in the
|
| 97 |
+
band''s dissolution and the subsequent formation of New Order. Curtis was known
|
| 98 |
+
for his baritone voice, dance style, and songwriting filled with imagery of desolation,
|
| 99 |
+
emptiness and alienation. In 1995, Curtis''s widow Deborah published Touching
|
| 100 |
+
from a Distance: Ian Curtis and Joy Division, a biography of the singer. His life
|
| 101 |
+
and death have been dramatised in the films 24 Hour Party People (2002) and Control
|
| 102 |
+
(2007). ...more'
|
| 103 |
+
- The human body has two basic types of senses, called special senses and general
|
| 104 |
+
senses. Special senses have specialized sense organs that gather sensory information
|
| 105 |
+
and change it into nerve impulses. ... General senses, in contrast, are all associated
|
| 106 |
+
with the sense of touch. They lack special sense organs.
|
| 107 |
+
- Captain Hook Barrie states in the novel that "Hook was not his true name. To reveal
|
| 108 |
+
who he really was would even at this date set the country in a blaze", and relates
|
| 109 |
+
that Peter Pan began their rivalry by feeding the pirate's hand to the crocodile.
|
| 110 |
+
He is said to be "Blackbeard's bo'sun" and "the only man of whom Barbecue was
|
| 111 |
+
afraid".[5] (In Robert Louis Stevenson's Treasure Island, one of the names Long
|
| 112 |
+
John Silver goes by is Barbecue.)[6]
|
| 113 |
+
- source_sentence: Retzius was born in Stockholm , son of the anatomist Anders Jahan
|
| 114 |
+
Retzius ( and grandson of the naturalist and chemist Anders Retzius ) .
|
| 115 |
+
sentences:
|
| 116 |
+
- Retzius was born in Stockholm , the son of anatomist Anders Jahan Retzius ( and
|
| 117 |
+
grandson of the naturalist and chemist Anders Retzius ) .
|
| 118 |
+
- As of 14 March , over 156,000 cases of COVID-19 have been reported in around 140
|
| 119 |
+
countries and territories ; more than 5,800 people have died from the disease
|
| 120 |
+
and around 75,000 have recovered .
|
| 121 |
+
- A person sitting on a stool on the street.
|
| 122 |
+
- source_sentence: who was the first person who made the violin
|
| 123 |
+
sentences:
|
| 124 |
+
- Alice in Chains Alice in Chains is an American rock band from Seattle, Washington,
|
| 125 |
+
formed in 1987 by guitarist and vocalist Jerry Cantrell and drummer Sean Kinney,[1]
|
| 126 |
+
who recruited bassist Mike Starr[1] and lead vocalist Layne Staley.[1][2][3] Starr
|
| 127 |
+
was replaced by Mike Inez in 1993.[4] After Staley's death in 2002, William DuVall
|
| 128 |
+
joined in 2006 as co-lead vocalist and rhythm guitarist. The band took its name
|
| 129 |
+
from Staley's previous group, the glam metal band Alice N' Chains.[5][2]
|
| 130 |
+
- as distance from an object decreases , that object will appear larger
|
| 131 |
+
- Violin The first makers of violins probably borrowed from various developments
|
| 132 |
+
of the Byzantine lira. These included the rebec;[13] the Arabic rebab; the vielle
|
| 133 |
+
(also known as the fidel or viuola); and the lira da braccio[11][14] The violin
|
| 134 |
+
in its present form emerged in early 16th-century northern Italy. The earliest
|
| 135 |
+
pictures of violins, albeit with three strings, are seen in northern Italy around
|
| 136 |
+
1530, at around the same time as the words "violino" and "vyollon" are seen in
|
| 137 |
+
Italian and French documents. One of the earliest explicit descriptions of the
|
| 138 |
+
instrument, including its tuning, is from the Epitome musical by Jambe de Fer,
|
| 139 |
+
published in Lyon in 1556.[15] By this time, the violin had already begun to spread
|
| 140 |
+
throughout Europe.
|
| 141 |
+
model-index:
|
| 142 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
| 143 |
+
results:
|
| 144 |
+
- task:
|
| 145 |
+
type: semantic-similarity
|
| 146 |
+
name: Semantic Similarity
|
| 147 |
+
dataset:
|
| 148 |
+
name: sts test
|
| 149 |
+
type: sts-test
|
| 150 |
+
metrics:
|
| 151 |
+
- type: pearson_cosine
|
| 152 |
+
value: 0.1561600438268545
|
| 153 |
+
name: Pearson Cosine
|
| 154 |
+
- type: spearman_cosine
|
| 155 |
+
value: 0.22356441354815124
|
| 156 |
+
name: Spearman Cosine
|
| 157 |
+
- type: pearson_manhattan
|
| 158 |
+
value: 0.2216924674035587
|
| 159 |
+
name: Pearson Manhattan
|
| 160 |
+
- type: spearman_manhattan
|
| 161 |
+
value: 0.24997065610359018
|
| 162 |
+
name: Spearman Manhattan
|
| 163 |
+
- type: pearson_euclidean
|
| 164 |
+
value: 0.1908690981304929
|
| 165 |
+
name: Pearson Euclidean
|
| 166 |
+
- type: spearman_euclidean
|
| 167 |
+
value: 0.22363767136304896
|
| 168 |
+
name: Spearman Euclidean
|
| 169 |
+
- type: pearson_dot
|
| 170 |
+
value: 0.15588248423807516
|
| 171 |
+
name: Pearson Dot
|
| 172 |
+
- type: spearman_dot
|
| 173 |
+
value: 0.22337189362164545
|
| 174 |
+
name: Spearman Dot
|
| 175 |
+
- type: pearson_max
|
| 176 |
+
value: 0.2216924674035587
|
| 177 |
+
name: Pearson Max
|
| 178 |
+
- type: spearman_max
|
| 179 |
+
value: 0.24997065610359018
|
| 180 |
+
name: Spearman Max
|
| 181 |
+
- task:
|
| 182 |
+
type: binary-classification
|
| 183 |
+
name: Binary Classification
|
| 184 |
+
dataset:
|
| 185 |
+
name: allNLI dev
|
| 186 |
+
type: allNLI-dev
|
| 187 |
+
metrics:
|
| 188 |
+
- type: cosine_accuracy
|
| 189 |
+
value: 0.666015625
|
| 190 |
+
name: Cosine Accuracy
|
| 191 |
+
- type: cosine_accuracy_threshold
|
| 192 |
+
value: 0.9797871112823486
|
| 193 |
+
name: Cosine Accuracy Threshold
|
| 194 |
+
- type: cosine_f1
|
| 195 |
+
value: 0.504258943781942
|
| 196 |
+
name: Cosine F1
|
| 197 |
+
- type: cosine_f1_threshold
|
| 198 |
+
value: 0.8929213285446167
|
| 199 |
+
name: Cosine F1 Threshold
|
| 200 |
+
- type: cosine_precision
|
| 201 |
+
value: 0.357487922705314
|
| 202 |
+
name: Cosine Precision
|
| 203 |
+
- type: cosine_recall
|
| 204 |
+
value: 0.8554913294797688
|
| 205 |
+
name: Cosine Recall
|
| 206 |
+
- type: cosine_ap
|
| 207 |
+
value: 0.4008449937025217
|
| 208 |
+
name: Cosine Ap
|
| 209 |
+
- type: dot_accuracy
|
| 210 |
+
value: 0.666015625
|
| 211 |
+
name: Dot Accuracy
|
| 212 |
+
- type: dot_accuracy_threshold
|
| 213 |
+
value: 752.6634521484375
|
| 214 |
+
name: Dot Accuracy Threshold
|
| 215 |
+
- type: dot_f1
|
| 216 |
+
value: 0.504258943781942
|
| 217 |
+
name: Dot F1
|
| 218 |
+
- type: dot_f1_threshold
|
| 219 |
+
value: 685.9220581054688
|
| 220 |
+
name: Dot F1 Threshold
|
| 221 |
+
- type: dot_precision
|
| 222 |
+
value: 0.357487922705314
|
| 223 |
+
name: Dot Precision
|
| 224 |
+
- type: dot_recall
|
| 225 |
+
value: 0.8554913294797688
|
| 226 |
+
name: Dot Recall
|
| 227 |
+
- type: dot_ap
|
| 228 |
+
value: 0.40071344979441287
|
| 229 |
+
name: Dot Ap
|
| 230 |
+
- type: manhattan_accuracy
|
| 231 |
+
value: 0.66796875
|
| 232 |
+
name: Manhattan Accuracy
|
| 233 |
+
- type: manhattan_accuracy_threshold
|
| 234 |
+
value: 144.52613830566406
|
| 235 |
+
name: Manhattan Accuracy Threshold
|
| 236 |
+
- type: manhattan_f1
|
| 237 |
+
value: 0.5075987841945289
|
| 238 |
+
name: Manhattan F1
|
| 239 |
+
- type: manhattan_f1_threshold
|
| 240 |
+
value: 267.046875
|
| 241 |
+
name: Manhattan F1 Threshold
|
| 242 |
+
- type: manhattan_precision
|
| 243 |
+
value: 0.3443298969072165
|
| 244 |
+
name: Manhattan Precision
|
| 245 |
+
- type: manhattan_recall
|
| 246 |
+
value: 0.9653179190751445
|
| 247 |
+
name: Manhattan Recall
|
| 248 |
+
- type: manhattan_ap
|
| 249 |
+
value: 0.4008700157620745
|
| 250 |
+
name: Manhattan Ap
|
| 251 |
+
- type: euclidean_accuracy
|
| 252 |
+
value: 0.666015625
|
| 253 |
+
name: Euclidean Accuracy
|
| 254 |
+
- type: euclidean_accuracy_threshold
|
| 255 |
+
value: 5.572628974914551
|
| 256 |
+
name: Euclidean Accuracy Threshold
|
| 257 |
+
- type: euclidean_f1
|
| 258 |
+
value: 0.504258943781942
|
| 259 |
+
name: Euclidean F1
|
| 260 |
+
- type: euclidean_f1_threshold
|
| 261 |
+
value: 12.826179504394531
|
| 262 |
+
name: Euclidean F1 Threshold
|
| 263 |
+
- type: euclidean_precision
|
| 264 |
+
value: 0.357487922705314
|
| 265 |
+
name: Euclidean Precision
|
| 266 |
+
- type: euclidean_recall
|
| 267 |
+
value: 0.8554913294797688
|
| 268 |
+
name: Euclidean Recall
|
| 269 |
+
- type: euclidean_ap
|
| 270 |
+
value: 0.40083962142052487
|
| 271 |
+
name: Euclidean Ap
|
| 272 |
+
- type: max_accuracy
|
| 273 |
+
value: 0.66796875
|
| 274 |
+
name: Max Accuracy
|
| 275 |
+
- type: max_accuracy_threshold
|
| 276 |
+
value: 752.6634521484375
|
| 277 |
+
name: Max Accuracy Threshold
|
| 278 |
+
- type: max_f1
|
| 279 |
+
value: 0.5075987841945289
|
| 280 |
+
name: Max F1
|
| 281 |
+
- type: max_f1_threshold
|
| 282 |
+
value: 685.9220581054688
|
| 283 |
+
name: Max F1 Threshold
|
| 284 |
+
- type: max_precision
|
| 285 |
+
value: 0.357487922705314
|
| 286 |
+
name: Max Precision
|
| 287 |
+
- type: max_recall
|
| 288 |
+
value: 0.9653179190751445
|
| 289 |
+
name: Max Recall
|
| 290 |
+
- type: max_ap
|
| 291 |
+
value: 0.4008700157620745
|
| 292 |
+
name: Max Ap
|
| 293 |
+
- task:
|
| 294 |
+
type: binary-classification
|
| 295 |
+
name: Binary Classification
|
| 296 |
+
dataset:
|
| 297 |
+
name: Qnli dev
|
| 298 |
+
type: Qnli-dev
|
| 299 |
+
metrics:
|
| 300 |
+
- type: cosine_accuracy
|
| 301 |
+
value: 0.591796875
|
| 302 |
+
name: Cosine Accuracy
|
| 303 |
+
- type: cosine_accuracy_threshold
|
| 304 |
+
value: 0.9479926824569702
|
| 305 |
+
name: Cosine Accuracy Threshold
|
| 306 |
+
- type: cosine_f1
|
| 307 |
+
value: 0.6291834002677376
|
| 308 |
+
name: Cosine F1
|
| 309 |
+
- type: cosine_f1_threshold
|
| 310 |
+
value: 0.7761930823326111
|
| 311 |
+
name: Cosine F1 Threshold
|
| 312 |
+
- type: cosine_precision
|
| 313 |
+
value: 0.4598825831702544
|
| 314 |
+
name: Cosine Precision
|
| 315 |
+
- type: cosine_recall
|
| 316 |
+
value: 0.9957627118644068
|
| 317 |
+
name: Cosine Recall
|
| 318 |
+
- type: cosine_ap
|
| 319 |
+
value: 0.5658036772817674
|
| 320 |
+
name: Cosine Ap
|
| 321 |
+
- type: dot_accuracy
|
| 322 |
+
value: 0.59375
|
| 323 |
+
name: Dot Accuracy
|
| 324 |
+
- type: dot_accuracy_threshold
|
| 325 |
+
value: 724.091064453125
|
| 326 |
+
name: Dot Accuracy Threshold
|
| 327 |
+
- type: dot_f1
|
| 328 |
+
value: 0.6291834002677376
|
| 329 |
+
name: Dot F1
|
| 330 |
+
- type: dot_f1_threshold
|
| 331 |
+
value: 596.2498779296875
|
| 332 |
+
name: Dot F1 Threshold
|
| 333 |
+
- type: dot_precision
|
| 334 |
+
value: 0.4598825831702544
|
| 335 |
+
name: Dot Precision
|
| 336 |
+
- type: dot_recall
|
| 337 |
+
value: 0.9957627118644068
|
| 338 |
+
name: Dot Recall
|
| 339 |
+
- type: dot_ap
|
| 340 |
+
value: 0.5657459555147606
|
| 341 |
+
name: Dot Ap
|
| 342 |
+
- type: manhattan_accuracy
|
| 343 |
+
value: 0.6171875
|
| 344 |
+
name: Manhattan Accuracy
|
| 345 |
+
- type: manhattan_accuracy_threshold
|
| 346 |
+
value: 202.07958984375
|
| 347 |
+
name: Manhattan Accuracy Threshold
|
| 348 |
+
- type: manhattan_f1
|
| 349 |
+
value: 0.6291834002677376
|
| 350 |
+
name: Manhattan F1
|
| 351 |
+
- type: manhattan_f1_threshold
|
| 352 |
+
value: 307.9236145019531
|
| 353 |
+
name: Manhattan F1 Threshold
|
| 354 |
+
- type: manhattan_precision
|
| 355 |
+
value: 0.4598825831702544
|
| 356 |
+
name: Manhattan Precision
|
| 357 |
+
- type: manhattan_recall
|
| 358 |
+
value: 0.9957627118644068
|
| 359 |
+
name: Manhattan Recall
|
| 360 |
+
- type: manhattan_ap
|
| 361 |
+
value: 0.5891966424964378
|
| 362 |
+
name: Manhattan Ap
|
| 363 |
+
- type: euclidean_accuracy
|
| 364 |
+
value: 0.591796875
|
| 365 |
+
name: Euclidean Accuracy
|
| 366 |
+
- type: euclidean_accuracy_threshold
|
| 367 |
+
value: 8.938886642456055
|
| 368 |
+
name: Euclidean Accuracy Threshold
|
| 369 |
+
- type: euclidean_f1
|
| 370 |
+
value: 0.6291834002677376
|
| 371 |
+
name: Euclidean F1
|
| 372 |
+
- type: euclidean_f1_threshold
|
| 373 |
+
value: 18.542938232421875
|
| 374 |
+
name: Euclidean F1 Threshold
|
| 375 |
+
- type: euclidean_precision
|
| 376 |
+
value: 0.4598825831702544
|
| 377 |
+
name: Euclidean Precision
|
| 378 |
+
- type: euclidean_recall
|
| 379 |
+
value: 0.9957627118644068
|
| 380 |
+
name: Euclidean Recall
|
| 381 |
+
- type: euclidean_ap
|
| 382 |
+
value: 0.5658036772817674
|
| 383 |
+
name: Euclidean Ap
|
| 384 |
+
- type: max_accuracy
|
| 385 |
+
value: 0.6171875
|
| 386 |
+
name: Max Accuracy
|
| 387 |
+
- type: max_accuracy_threshold
|
| 388 |
+
value: 724.091064453125
|
| 389 |
+
name: Max Accuracy Threshold
|
| 390 |
+
- type: max_f1
|
| 391 |
+
value: 0.6291834002677376
|
| 392 |
+
name: Max F1
|
| 393 |
+
- type: max_f1_threshold
|
| 394 |
+
value: 596.2498779296875
|
| 395 |
+
name: Max F1 Threshold
|
| 396 |
+
- type: max_precision
|
| 397 |
+
value: 0.4598825831702544
|
| 398 |
+
name: Max Precision
|
| 399 |
+
- type: max_recall
|
| 400 |
+
value: 0.9957627118644068
|
| 401 |
+
name: Max Recall
|
| 402 |
+
- type: max_ap
|
| 403 |
+
value: 0.5891966424964378
|
| 404 |
+
name: Max Ap
|
| 405 |
+
---
|
| 406 |
+
|
| 407 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
| 408 |
+
|
| 409 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 410 |
+
|
| 411 |
+
## Model Details
|
| 412 |
+
|
| 413 |
+
### Model Description
|
| 414 |
+
- **Model Type:** Sentence Transformer
|
| 415 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
| 416 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 417 |
+
- **Output Dimensionality:** 768 tokens
|
| 418 |
+
- **Similarity Function:** Cosine Similarity
|
| 419 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 420 |
+
<!-- - **Language:** Unknown -->
|
| 421 |
+
<!-- - **License:** Unknown -->
|
| 422 |
+
|
| 423 |
+
### Model Sources
|
| 424 |
+
|
| 425 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 426 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 427 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 428 |
+
|
| 429 |
+
### Full Model Architecture
|
| 430 |
+
|
| 431 |
+
```
|
| 432 |
+
SentenceTransformer(
|
| 433 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
| 434 |
+
(1): AdvancedWeightedPooling(
|
| 435 |
+
(linear_cls_pj): Linear(in_features=768, out_features=768, bias=True)
|
| 436 |
+
(linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
|
| 437 |
+
(linear_mean_pj): Linear(in_features=768, out_features=768, bias=True)
|
| 438 |
+
(linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
|
| 439 |
+
(mha): MultiheadAttention(
|
| 440 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
| 441 |
+
)
|
| 442 |
+
(layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 443 |
+
(layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 444 |
+
(layernorm_pjCls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 445 |
+
(layernorm_pjMean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 446 |
+
(layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
| 447 |
+
)
|
| 448 |
+
)
|
| 449 |
+
```
|
| 450 |
+
|
| 451 |
+
## Usage
|
| 452 |
+
|
| 453 |
+
### Direct Usage (Sentence Transformers)
|
| 454 |
+
|
| 455 |
+
First install the Sentence Transformers library:
|
| 456 |
+
|
| 457 |
+
```bash
|
| 458 |
+
pip install -U sentence-transformers
|
| 459 |
+
```
|
| 460 |
+
|
| 461 |
+
Then you can load this model and run inference.
|
| 462 |
+
```python
|
| 463 |
+
from sentence_transformers import SentenceTransformer
|
| 464 |
+
|
| 465 |
+
# Download from the 🤗 Hub
|
| 466 |
+
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest-step1-checkpoints-tmp")
|
| 467 |
+
# Run inference
|
| 468 |
+
sentences = [
|
| 469 |
+
'who was the first person who made the violin',
|
| 470 |
+
'Violin The first makers of violins probably borrowed from various developments of the Byzantine lira. These included the rebec;[13] the Arabic rebab; the vielle (also known as the fidel or viuola); and the lira da braccio[11][14] The violin in its present form emerged in early 16th-century northern Italy. The earliest pictures of violins, albeit with three strings, are seen in northern Italy around 1530, at around the same time as the words "violino" and "vyollon" are seen in Italian and French documents. One of the earliest explicit descriptions of the instrument, including its tuning, is from the Epitome musical by Jambe de Fer, published in Lyon in 1556.[15] By this time, the violin had already begun to spread throughout Europe.',
|
| 471 |
+
"Alice in Chains Alice in Chains is an American rock band from Seattle, Washington, formed in 1987 by guitarist and vocalist Jerry Cantrell and drummer Sean Kinney,[1] who recruited bassist Mike Starr[1] and lead vocalist Layne Staley.[1][2][3] Starr was replaced by Mike Inez in 1993.[4] After Staley's death in 2002, William DuVall joined in 2006 as co-lead vocalist and rhythm guitarist. The band took its name from Staley's previous group, the glam metal band Alice N' Chains.[5][2]",
|
| 472 |
+
]
|
| 473 |
+
embeddings = model.encode(sentences)
|
| 474 |
+
print(embeddings.shape)
|
| 475 |
+
# [3, 768]
|
| 476 |
+
|
| 477 |
+
# Get the similarity scores for the embeddings
|
| 478 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 479 |
+
print(similarities.shape)
|
| 480 |
+
# [3, 3]
|
| 481 |
+
```
|
| 482 |
+
|
| 483 |
+
<!--
|
| 484 |
+
### Direct Usage (Transformers)
|
| 485 |
+
|
| 486 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 487 |
+
|
| 488 |
+
</details>
|
| 489 |
+
-->
|
| 490 |
+
|
| 491 |
+
<!--
|
| 492 |
+
### Downstream Usage (Sentence Transformers)
|
| 493 |
+
|
| 494 |
+
You can finetune this model on your own dataset.
|
| 495 |
+
|
| 496 |
+
<details><summary>Click to expand</summary>
|
| 497 |
+
|
| 498 |
+
</details>
|
| 499 |
+
-->
|
| 500 |
+
|
| 501 |
+
<!--
|
| 502 |
+
### Out-of-Scope Use
|
| 503 |
+
|
| 504 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 505 |
+
-->
|
| 506 |
+
|
| 507 |
+
## Evaluation
|
| 508 |
+
|
| 509 |
+
### Metrics
|
| 510 |
+
|
| 511 |
+
#### Semantic Similarity
|
| 512 |
+
* Dataset: `sts-test`
|
| 513 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 514 |
+
|
| 515 |
+
| Metric | Value |
|
| 516 |
+
|:--------------------|:-----------|
|
| 517 |
+
| pearson_cosine | 0.1562 |
|
| 518 |
+
| **spearman_cosine** | **0.2236** |
|
| 519 |
+
| pearson_manhattan | 0.2217 |
|
| 520 |
+
| spearman_manhattan | 0.25 |
|
| 521 |
+
| pearson_euclidean | 0.1909 |
|
| 522 |
+
| spearman_euclidean | 0.2236 |
|
| 523 |
+
| pearson_dot | 0.1559 |
|
| 524 |
+
| spearman_dot | 0.2234 |
|
| 525 |
+
| pearson_max | 0.2217 |
|
| 526 |
+
| spearman_max | 0.25 |
|
| 527 |
+
|
| 528 |
+
#### Binary Classification
|
| 529 |
+
* Dataset: `allNLI-dev`
|
| 530 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
| 531 |
+
|
| 532 |
+
| Metric | Value |
|
| 533 |
+
|:-----------------------------|:-----------|
|
| 534 |
+
| cosine_accuracy | 0.666 |
|
| 535 |
+
| cosine_accuracy_threshold | 0.9798 |
|
| 536 |
+
| cosine_f1 | 0.5043 |
|
| 537 |
+
| cosine_f1_threshold | 0.8929 |
|
| 538 |
+
| cosine_precision | 0.3575 |
|
| 539 |
+
| cosine_recall | 0.8555 |
|
| 540 |
+
| cosine_ap | 0.4008 |
|
| 541 |
+
| dot_accuracy | 0.666 |
|
| 542 |
+
| dot_accuracy_threshold | 752.6635 |
|
| 543 |
+
| dot_f1 | 0.5043 |
|
| 544 |
+
| dot_f1_threshold | 685.9221 |
|
| 545 |
+
| dot_precision | 0.3575 |
|
| 546 |
+
| dot_recall | 0.8555 |
|
| 547 |
+
| dot_ap | 0.4007 |
|
| 548 |
+
| manhattan_accuracy | 0.668 |
|
| 549 |
+
| manhattan_accuracy_threshold | 144.5261 |
|
| 550 |
+
| manhattan_f1 | 0.5076 |
|
| 551 |
+
| manhattan_f1_threshold | 267.0469 |
|
| 552 |
+
| manhattan_precision | 0.3443 |
|
| 553 |
+
| manhattan_recall | 0.9653 |
|
| 554 |
+
| manhattan_ap | 0.4009 |
|
| 555 |
+
| euclidean_accuracy | 0.666 |
|
| 556 |
+
| euclidean_accuracy_threshold | 5.5726 |
|
| 557 |
+
| euclidean_f1 | 0.5043 |
|
| 558 |
+
| euclidean_f1_threshold | 12.8262 |
|
| 559 |
+
| euclidean_precision | 0.3575 |
|
| 560 |
+
| euclidean_recall | 0.8555 |
|
| 561 |
+
| euclidean_ap | 0.4008 |
|
| 562 |
+
| max_accuracy | 0.668 |
|
| 563 |
+
| max_accuracy_threshold | 752.6635 |
|
| 564 |
+
| max_f1 | 0.5076 |
|
| 565 |
+
| max_f1_threshold | 685.9221 |
|
| 566 |
+
| max_precision | 0.3575 |
|
| 567 |
+
| max_recall | 0.9653 |
|
| 568 |
+
| **max_ap** | **0.4009** |
|
| 569 |
+
|
| 570 |
+
#### Binary Classification
|
| 571 |
+
* Dataset: `Qnli-dev`
|
| 572 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
| 573 |
+
|
| 574 |
+
| Metric | Value |
|
| 575 |
+
|:-----------------------------|:-----------|
|
| 576 |
+
| cosine_accuracy | 0.5918 |
|
| 577 |
+
| cosine_accuracy_threshold | 0.948 |
|
| 578 |
+
| cosine_f1 | 0.6292 |
|
| 579 |
+
| cosine_f1_threshold | 0.7762 |
|
| 580 |
+
| cosine_precision | 0.4599 |
|
| 581 |
+
| cosine_recall | 0.9958 |
|
| 582 |
+
| cosine_ap | 0.5658 |
|
| 583 |
+
| dot_accuracy | 0.5938 |
|
| 584 |
+
| dot_accuracy_threshold | 724.0911 |
|
| 585 |
+
| dot_f1 | 0.6292 |
|
| 586 |
+
| dot_f1_threshold | 596.2499 |
|
| 587 |
+
| dot_precision | 0.4599 |
|
| 588 |
+
| dot_recall | 0.9958 |
|
| 589 |
+
| dot_ap | 0.5657 |
|
| 590 |
+
| manhattan_accuracy | 0.6172 |
|
| 591 |
+
| manhattan_accuracy_threshold | 202.0796 |
|
| 592 |
+
| manhattan_f1 | 0.6292 |
|
| 593 |
+
| manhattan_f1_threshold | 307.9236 |
|
| 594 |
+
| manhattan_precision | 0.4599 |
|
| 595 |
+
| manhattan_recall | 0.9958 |
|
| 596 |
+
| manhattan_ap | 0.5892 |
|
| 597 |
+
| euclidean_accuracy | 0.5918 |
|
| 598 |
+
| euclidean_accuracy_threshold | 8.9389 |
|
| 599 |
+
| euclidean_f1 | 0.6292 |
|
| 600 |
+
| euclidean_f1_threshold | 18.5429 |
|
| 601 |
+
| euclidean_precision | 0.4599 |
|
| 602 |
+
| euclidean_recall | 0.9958 |
|
| 603 |
+
| euclidean_ap | 0.5658 |
|
| 604 |
+
| max_accuracy | 0.6172 |
|
| 605 |
+
| max_accuracy_threshold | 724.0911 |
|
| 606 |
+
| max_f1 | 0.6292 |
|
| 607 |
+
| max_f1_threshold | 596.2499 |
|
| 608 |
+
| max_precision | 0.4599 |
|
| 609 |
+
| max_recall | 0.9958 |
|
| 610 |
+
| **max_ap** | **0.5892** |
|
| 611 |
+
|
| 612 |
+
<!--
|
| 613 |
+
## Bias, Risks and Limitations
|
| 614 |
+
|
| 615 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 616 |
+
-->
|
| 617 |
+
|
| 618 |
+
<!--
|
| 619 |
+
### Recommendations
|
| 620 |
+
|
| 621 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 622 |
+
-->
|
| 623 |
+
|
| 624 |
+
## Training Details
|
| 625 |
+
|
| 626 |
+
### Training Dataset
|
| 627 |
+
|
| 628 |
+
#### Unnamed Dataset
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
* Size: 32,500 training samples
|
| 632 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
| 633 |
+
* Approximate statistics based on the first 1000 samples:
|
| 634 |
+
| | sentence1 | sentence2 |
|
| 635 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 636 |
+
| type | string | string |
|
| 637 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 29.3 tokens</li><li>max: 343 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 57.53 tokens</li><li>max: 512 tokens</li></ul> |
|
| 638 |
+
* Samples:
|
| 639 |
+
| sentence1 | sentence2 |
|
| 640 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 641 |
+
| <code>A Slippery Dick is what type of creature?</code> | <code>The Slippery Dick (Juvenile) - Whats That Fish! Description Also known as Sand-reef Wrasses and Slippery Dick Wrasse. Found singly or in pairs or in groups constantly circling around reefs, sea grass beds and sandy areas. Colours highly variable especially between juvenile to adult. They feed on hard shell invertebrates. Length - 18cm Depth - 2-12m Widespread Western Atlantic & Caribbean Most reef fish seen by divers during the day are grazers, that cruise around just above the surface of the coral or snoop into crevices looking for algae, worms and small crustaceans. Wrasses have small protruding teeth and graze the bottom taking in a variety of snails, worms, crabs, shrimps and eggs. Any hard coats or thick shells are then ground down by their pharyngeal jaws and the delicacies inside digested. From juvenile to adult wrasses dramatically alter their colour and body shapes. Wrasses are always on the go during the day, but are the first to go to bed and the last to rise. Small wrasses dive below the sand to sleep and larger wrasses wedge themselves in crevasses. Related creatures Heads up! Many creatures change during their life. Juvenile fish become adults and some change shape or their colour. Some species change sex and others just get older. The following creature(s) are known relatives of the Slippery Dick (Juvenile). Click the image(s) to explore further or hover over to get a better view! Slippery Dick</code> |
|
| 642 |
+
| <code>e.	in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code> | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code> |
|
| 643 |
+
| <code>In December 2015 , the film was ranked # 192 on IMDb .</code> | <code>As of December 2015 , it is the # 192 highest rated film on IMDb.</code> |
|
| 644 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 645 |
+
```json
|
| 646 |
+
{'guide': SentenceTransformer(
|
| 647 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 648 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 649 |
+
(2): Normalize()
|
| 650 |
+
), 'temperature': 0.025}
|
| 651 |
+
```
|
| 652 |
+
|
| 653 |
+
### Evaluation Dataset
|
| 654 |
+
|
| 655 |
+
#### Unnamed Dataset
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
* Size: 1,664 evaluation samples
|
| 659 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
| 660 |
+
* Approximate statistics based on the first 1000 samples:
|
| 661 |
+
| | sentence1 | sentence2 |
|
| 662 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
| 663 |
+
| type | string | string |
|
| 664 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 28.74 tokens</li><li>max: 330 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.55 tokens</li><li>max: 512 tokens</li></ul> |
|
| 665 |
+
* Samples:
|
| 666 |
+
| sentence1 | sentence2 |
|
| 667 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 668 |
+
| <code>What component of an organism, made up of many cells, in turn makes up an organ?</code> | <code></code> |
|
| 669 |
+
| <code>Diffusion Diffusion is a process where atoms or molecules move from areas of high concentration to areas of low concentration.</code> | <code>Diffusion is the process in which a substance naturally moves from an area of higher to lower concentration.</code> |
|
| 670 |
+
| <code>In the 1966 movie The Good, The Bad And The Ugly, Clint Eastwood played the Good" and Lee van Cleef played "the Bad", but who played "the Ugly"?</code> | <code>View All Photos (10) Movie Info In the last and the best installment of his so-called "Dollars" trilogy of Sergio Leone-directed "spaghetti westerns," Clint Eastwood reprised the role of a taciturn, enigmatic loner. Here he searches for a cache of stolen gold against rivals the Bad (Lee Van Cleef), a ruthless bounty hunter, and the Ugly (Eli Wallach), a Mexican bandit. Though dubbed "the Good," Eastwood's character is not much better than his opponents -- he is just smarter and shoots faster. The film's title reveals its ironic attitude toward the canonized heroes of the classical western. "The real West was the world of violence, fear, and brutal instincts," claimed Leone. "In pursuit of profit there is no such thing as good and evil, generosity or deviousness; everything depends on chance, and not the best wins but the luckiest." Immensely entertaining and beautifully shot in Techniscope by Tonino Delli Colli, the movie is a virtually definitive "spaghetti western," rivaled only by Leone's own Once Upon a Time in the West (1968). The main musical theme by Ennio Morricone hit #1 on the British pop charts. Originally released in Italy at 177 minutes, the movie was later cut for its international release. ~ Yuri German, Rovi Rating:</code> |
|
| 671 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 672 |
+
```json
|
| 673 |
+
{'guide': SentenceTransformer(
|
| 674 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 675 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 676 |
+
(2): Normalize()
|
| 677 |
+
), 'temperature': 0.025}
|
| 678 |
+
```
|
| 679 |
+
|
| 680 |
+
### Training Hyperparameters
|
| 681 |
+
#### Non-Default Hyperparameters
|
| 682 |
+
|
| 683 |
+
- `eval_strategy`: steps
|
| 684 |
+
- `per_device_train_batch_size`: 32
|
| 685 |
+
- `per_device_eval_batch_size`: 256
|
| 686 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
| 687 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
|
| 688 |
+
- `warmup_ratio`: 0.33
|
| 689 |
+
- `save_safetensors`: False
|
| 690 |
+
- `fp16`: True
|
| 691 |
+
- `push_to_hub`: True
|
| 692 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest-step1-checkpoints-tmp
|
| 693 |
+
- `hub_strategy`: all_checkpoints
|
| 694 |
+
- `batch_sampler`: no_duplicates
|
| 695 |
+
|
| 696 |
+
#### All Hyperparameters
|
| 697 |
+
<details><summary>Click to expand</summary>
|
| 698 |
+
|
| 699 |
+
- `overwrite_output_dir`: False
|
| 700 |
+
- `do_predict`: False
|
| 701 |
+
- `eval_strategy`: steps
|
| 702 |
+
- `prediction_loss_only`: True
|
| 703 |
+
- `per_device_train_batch_size`: 32
|
| 704 |
+
- `per_device_eval_batch_size`: 256
|
| 705 |
+
- `per_gpu_train_batch_size`: None
|
| 706 |
+
- `per_gpu_eval_batch_size`: None
|
| 707 |
+
- `gradient_accumulation_steps`: 1
|
| 708 |
+
- `eval_accumulation_steps`: None
|
| 709 |
+
- `torch_empty_cache_steps`: None
|
| 710 |
+
- `learning_rate`: 5e-05
|
| 711 |
+
- `weight_decay`: 0.0
|
| 712 |
+
- `adam_beta1`: 0.9
|
| 713 |
+
- `adam_beta2`: 0.999
|
| 714 |
+
- `adam_epsilon`: 1e-08
|
| 715 |
+
- `max_grad_norm`: 1.0
|
| 716 |
+
- `num_train_epochs`: 3
|
| 717 |
+
- `max_steps`: -1
|
| 718 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
| 719 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
|
| 720 |
+
- `warmup_ratio`: 0.33
|
| 721 |
+
- `warmup_steps`: 0
|
| 722 |
+
- `log_level`: passive
|
| 723 |
+
- `log_level_replica`: warning
|
| 724 |
+
- `log_on_each_node`: True
|
| 725 |
+
- `logging_nan_inf_filter`: True
|
| 726 |
+
- `save_safetensors`: False
|
| 727 |
+
- `save_on_each_node`: False
|
| 728 |
+
- `save_only_model`: False
|
| 729 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 730 |
+
- `no_cuda`: False
|
| 731 |
+
- `use_cpu`: False
|
| 732 |
+
- `use_mps_device`: False
|
| 733 |
+
- `seed`: 42
|
| 734 |
+
- `data_seed`: None
|
| 735 |
+
- `jit_mode_eval`: False
|
| 736 |
+
- `use_ipex`: False
|
| 737 |
+
- `bf16`: False
|
| 738 |
+
- `fp16`: True
|
| 739 |
+
- `fp16_opt_level`: O1
|
| 740 |
+
- `half_precision_backend`: auto
|
| 741 |
+
- `bf16_full_eval`: False
|
| 742 |
+
- `fp16_full_eval`: False
|
| 743 |
+
- `tf32`: None
|
| 744 |
+
- `local_rank`: 0
|
| 745 |
+
- `ddp_backend`: None
|
| 746 |
+
- `tpu_num_cores`: None
|
| 747 |
+
- `tpu_metrics_debug`: False
|
| 748 |
+
- `debug`: []
|
| 749 |
+
- `dataloader_drop_last`: False
|
| 750 |
+
- `dataloader_num_workers`: 0
|
| 751 |
+
- `dataloader_prefetch_factor`: None
|
| 752 |
+
- `past_index`: -1
|
| 753 |
+
- `disable_tqdm`: False
|
| 754 |
+
- `remove_unused_columns`: True
|
| 755 |
+
- `label_names`: None
|
| 756 |
+
- `load_best_model_at_end`: False
|
| 757 |
+
- `ignore_data_skip`: False
|
| 758 |
+
- `fsdp`: []
|
| 759 |
+
- `fsdp_min_num_params`: 0
|
| 760 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 761 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 762 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 763 |
+
- `deepspeed`: None
|
| 764 |
+
- `label_smoothing_factor`: 0.0
|
| 765 |
+
- `optim`: adamw_torch
|
| 766 |
+
- `optim_args`: None
|
| 767 |
+
- `adafactor`: False
|
| 768 |
+
- `group_by_length`: False
|
| 769 |
+
- `length_column_name`: length
|
| 770 |
+
- `ddp_find_unused_parameters`: None
|
| 771 |
+
- `ddp_bucket_cap_mb`: None
|
| 772 |
+
- `ddp_broadcast_buffers`: False
|
| 773 |
+
- `dataloader_pin_memory`: True
|
| 774 |
+
- `dataloader_persistent_workers`: False
|
| 775 |
+
- `skip_memory_metrics`: True
|
| 776 |
+
- `use_legacy_prediction_loop`: False
|
| 777 |
+
- `push_to_hub`: True
|
| 778 |
+
- `resume_from_checkpoint`: None
|
| 779 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest-step1-checkpoints-tmp
|
| 780 |
+
- `hub_strategy`: all_checkpoints
|
| 781 |
+
- `hub_private_repo`: False
|
| 782 |
+
- `hub_always_push`: False
|
| 783 |
+
- `gradient_checkpointing`: False
|
| 784 |
+
- `gradient_checkpointing_kwargs`: None
|
| 785 |
+
- `include_inputs_for_metrics`: False
|
| 786 |
+
- `eval_do_concat_batches`: True
|
| 787 |
+
- `fp16_backend`: auto
|
| 788 |
+
- `push_to_hub_model_id`: None
|
| 789 |
+
- `push_to_hub_organization`: None
|
| 790 |
+
- `mp_parameters`:
|
| 791 |
+
- `auto_find_batch_size`: False
|
| 792 |
+
- `full_determinism`: False
|
| 793 |
+
- `torchdynamo`: None
|
| 794 |
+
- `ray_scope`: last
|
| 795 |
+
- `ddp_timeout`: 1800
|
| 796 |
+
- `torch_compile`: False
|
| 797 |
+
- `torch_compile_backend`: None
|
| 798 |
+
- `torch_compile_mode`: None
|
| 799 |
+
- `dispatch_batches`: None
|
| 800 |
+
- `split_batches`: None
|
| 801 |
+
- `include_tokens_per_second`: False
|
| 802 |
+
- `include_num_input_tokens_seen`: False
|
| 803 |
+
- `neftune_noise_alpha`: None
|
| 804 |
+
- `optim_target_modules`: None
|
| 805 |
+
- `batch_eval_metrics`: False
|
| 806 |
+
- `eval_on_start`: False
|
| 807 |
+
- `eval_use_gather_object`: False
|
| 808 |
+
- `batch_sampler`: no_duplicates
|
| 809 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 810 |
+
|
| 811 |
+
</details>
|
| 812 |
+
|
| 813 |
+
### Training Logs
|
| 814 |
+
<details><summary>Click to expand</summary>
|
| 815 |
+
|
| 816 |
+
| Epoch | Step | Training Loss | Validation Loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|
| 817 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:-----------------:|:---------------:|
|
| 818 |
+
| 0.0010 | 1 | 4.9603 | - | - | - | - |
|
| 819 |
+
| 0.0020 | 2 | 28.2529 | - | - | - | - |
|
| 820 |
+
| 0.0030 | 3 | 27.6365 | - | - | - | - |
|
| 821 |
+
| 0.0039 | 4 | 6.1387 | - | - | - | - |
|
| 822 |
+
| 0.0049 | 5 | 5.5753 | - | - | - | - |
|
| 823 |
+
| 0.0059 | 6 | 5.6951 | - | - | - | - |
|
| 824 |
+
| 0.0069 | 7 | 6.3533 | - | - | - | - |
|
| 825 |
+
| 0.0079 | 8 | 27.3848 | - | - | - | - |
|
| 826 |
+
| 0.0089 | 9 | 3.8501 | - | - | - | - |
|
| 827 |
+
| 0.0098 | 10 | 27.911 | - | - | - | - |
|
| 828 |
+
| 0.0108 | 11 | 4.9042 | - | - | - | - |
|
| 829 |
+
| 0.0118 | 12 | 6.8003 | - | - | - | - |
|
| 830 |
+
| 0.0128 | 13 | 5.7317 | - | - | - | - |
|
| 831 |
+
| 0.0138 | 14 | 20.261 | - | - | - | - |
|
| 832 |
+
| 0.0148 | 15 | 27.9051 | - | - | - | - |
|
| 833 |
+
| 0.0157 | 16 | 5.5959 | - | - | - | - |
|
| 834 |
+
| 0.0167 | 17 | 5.8052 | - | - | - | - |
|
| 835 |
+
| 0.0177 | 18 | 4.5088 | - | - | - | - |
|
| 836 |
+
| 0.0187 | 19 | 7.3472 | - | - | - | - |
|
| 837 |
+
| 0.0197 | 20 | 5.8668 | - | - | - | - |
|
| 838 |
+
| 0.0207 | 21 | 6.4083 | - | - | - | - |
|
| 839 |
+
| 0.0217 | 22 | 6.011 | - | - | - | - |
|
| 840 |
+
| 0.0226 | 23 | 5.2394 | - | - | - | - |
|
| 841 |
+
| 0.0236 | 24 | 4.2966 | - | - | - | - |
|
| 842 |
+
| 0.0246 | 25 | 26.605 | - | - | - | - |
|
| 843 |
+
| 0.0256 | 26 | 6.2067 | - | - | - | - |
|
| 844 |
+
| 0.0266 | 27 | 6.0346 | - | - | - | - |
|
| 845 |
+
| 0.0276 | 28 | 5.4676 | - | - | - | - |
|
| 846 |
+
| 0.0285 | 29 | 6.4292 | - | - | - | - |
|
| 847 |
+
| 0.0295 | 30 | 26.6452 | - | - | - | - |
|
| 848 |
+
| 0.0305 | 31 | 18.8401 | - | - | - | - |
|
| 849 |
+
| 0.0315 | 32 | 7.4531 | - | - | - | - |
|
| 850 |
+
| 0.0325 | 33 | 4.8286 | - | - | - | - |
|
| 851 |
+
| 0.0335 | 34 | 5.0078 | - | - | - | - |
|
| 852 |
+
| 0.0344 | 35 | 5.4115 | - | - | - | - |
|
| 853 |
+
| 0.0354 | 36 | 5.4196 | - | - | - | - |
|
| 854 |
+
| 0.0364 | 37 | 4.5023 | - | - | - | - |
|
| 855 |
+
| 0.0374 | 38 | 5.376 | - | - | - | - |
|
| 856 |
+
| 0.0384 | 39 | 5.2303 | - | - | - | - |
|
| 857 |
+
| 0.0394 | 40 | 5.6694 | - | - | - | - |
|
| 858 |
+
| 0.0404 | 41 | 4.7825 | - | - | - | - |
|
| 859 |
+
| 0.0413 | 42 | 4.6507 | - | - | - | - |
|
| 860 |
+
| 0.0423 | 43 | 24.2072 | - | - | - | - |
|
| 861 |
+
| 0.0433 | 44 | 4.9285 | - | - | - | - |
|
| 862 |
+
| 0.0443 | 45 | 6.326 | - | - | - | - |
|
| 863 |
+
| 0.0453 | 46 | 4.5724 | - | - | - | - |
|
| 864 |
+
| 0.0463 | 47 | 4.754 | - | - | - | - |
|
| 865 |
+
| 0.0472 | 48 | 5.5443 | - | - | - | - |
|
| 866 |
+
| 0.0482 | 49 | 4.5764 | - | - | - | - |
|
| 867 |
+
| 0.0492 | 50 | 5.1434 | - | - | - | - |
|
| 868 |
+
| 0.0502 | 51 | 22.6991 | - | - | - | - |
|
| 869 |
+
| 0.0512 | 52 | 5.4277 | - | - | - | - |
|
| 870 |
+
| 0.0522 | 53 | 5.0178 | - | - | - | - |
|
| 871 |
+
| 0.0531 | 54 | 4.8779 | - | - | - | - |
|
| 872 |
+
| 0.0541 | 55 | 4.2884 | - | - | - | - |
|
| 873 |
+
| 0.0551 | 56 | 16.0994 | - | - | - | - |
|
| 874 |
+
| 0.0561 | 57 | 21.31 | - | - | - | - |
|
| 875 |
+
| 0.0571 | 58 | 4.9721 | - | - | - | - |
|
| 876 |
+
| 0.0581 | 59 | 5.143 | - | - | - | - |
|
| 877 |
+
| 0.0591 | 60 | 3.5933 | - | - | - | - |
|
| 878 |
+
| 0.0600 | 61 | 5.2559 | - | - | - | - |
|
| 879 |
+
| 0.0610 | 62 | 4.0757 | - | - | - | - |
|
| 880 |
+
| 0.0620 | 63 | 3.6612 | - | - | - | - |
|
| 881 |
+
| 0.0630 | 64 | 4.7505 | - | - | - | - |
|
| 882 |
+
| 0.0640 | 65 | 4.1979 | - | - | - | - |
|
| 883 |
+
| 0.0650 | 66 | 3.9982 | - | - | - | - |
|
| 884 |
+
| 0.0659 | 67 | 4.7065 | - | - | - | - |
|
| 885 |
+
| 0.0669 | 68 | 5.3413 | - | - | - | - |
|
| 886 |
+
| 0.0679 | 69 | 3.6964 | - | - | - | - |
|
| 887 |
+
| 0.0689 | 70 | 17.8774 | - | - | - | - |
|
| 888 |
+
| 0.0699 | 71 | 4.8154 | - | - | - | - |
|
| 889 |
+
| 0.0709 | 72 | 4.8356 | - | - | - | - |
|
| 890 |
+
| 0.0719 | 73 | 4.568 | - | - | - | - |
|
| 891 |
+
| 0.0728 | 74 | 4.0898 | - | - | - | - |
|
| 892 |
+
| 0.0738 | 75 | 3.4502 | - | - | - | - |
|
| 893 |
+
| 0.0748 | 76 | 3.7733 | - | - | - | - |
|
| 894 |
+
| 0.0758 | 77 | 4.5204 | - | - | - | - |
|
| 895 |
+
| 0.0768 | 78 | 4.2526 | - | - | - | - |
|
| 896 |
+
| 0.0778 | 79 | 4.4398 | - | - | - | - |
|
| 897 |
+
| 0.0787 | 80 | 4.0988 | - | - | - | - |
|
| 898 |
+
| 0.0797 | 81 | 3.9704 | - | - | - | - |
|
| 899 |
+
| 0.0807 | 82 | 4.3343 | - | - | - | - |
|
| 900 |
+
| 0.0817 | 83 | 4.2587 | - | - | - | - |
|
| 901 |
+
| 0.0827 | 84 | 15.0149 | - | - | - | - |
|
| 902 |
+
| 0.0837 | 85 | 14.6599 | - | - | - | - |
|
| 903 |
+
| 0.0846 | 86 | 4.0623 | - | - | - | - |
|
| 904 |
+
| 0.0856 | 87 | 3.7597 | - | - | - | - |
|
| 905 |
+
| 0.0866 | 88 | 4.3433 | - | - | - | - |
|
| 906 |
+
| 0.0876 | 89 | 4.0287 | - | - | - | - |
|
| 907 |
+
| 0.0886 | 90 | 4.6257 | - | - | - | - |
|
| 908 |
+
| 0.0896 | 91 | 13.4689 | - | - | - | - |
|
| 909 |
+
| 0.0906 | 92 | 4.6583 | - | - | - | - |
|
| 910 |
+
| 0.0915 | 93 | 4.2682 | - | - | - | - |
|
| 911 |
+
| 0.0925 | 94 | 4.468 | - | - | - | - |
|
| 912 |
+
| 0.0935 | 95 | 3.4333 | - | - | - | - |
|
| 913 |
+
| 0.0945 | 96 | 12.7654 | - | - | - | - |
|
| 914 |
+
| 0.0955 | 97 | 3.5577 | - | - | - | - |
|
| 915 |
+
| 0.0965 | 98 | 12.5875 | - | - | - | - |
|
| 916 |
+
| 0.0974 | 99 | 4.2206 | - | - | - | - |
|
| 917 |
+
| 0.0984 | 100 | 3.5981 | - | - | - | - |
|
| 918 |
+
| 0.0994 | 101 | 3.5575 | - | - | - | - |
|
| 919 |
+
| 0.1004 | 102 | 4.0271 | - | - | - | - |
|
| 920 |
+
| 0.1014 | 103 | 4.0803 | - | - | - | - |
|
| 921 |
+
| 0.1024 | 104 | 4.0886 | - | - | - | - |
|
| 922 |
+
| 0.1033 | 105 | 4.176 | - | - | - | - |
|
| 923 |
+
| 0.1043 | 106 | 4.6653 | - | - | - | - |
|
| 924 |
+
| 0.1053 | 107 | 4.3076 | - | - | - | - |
|
| 925 |
+
| 0.1063 | 108 | 8.7282 | - | - | - | - |
|
| 926 |
+
| 0.1073 | 109 | 3.4192 | - | - | - | - |
|
| 927 |
+
| 0.1083 | 110 | 10.6027 | - | - | - | - |
|
| 928 |
+
| 0.1093 | 111 | 4.0959 | - | - | - | - |
|
| 929 |
+
| 0.1102 | 112 | 4.2785 | - | - | - | - |
|
| 930 |
+
| 0.1112 | 113 | 3.9945 | - | - | - | - |
|
| 931 |
+
| 0.1122 | 114 | 10.0652 | - | - | - | - |
|
| 932 |
+
| 0.1132 | 115 | 3.8621 | - | - | - | - |
|
| 933 |
+
| 0.1142 | 116 | 4.3975 | - | - | - | - |
|
| 934 |
+
| 0.1152 | 117 | 9.7899 | - | - | - | - |
|
| 935 |
+
| 0.1161 | 118 | 4.3812 | - | - | - | - |
|
| 936 |
+
| 0.1171 | 119 | 3.8715 | - | - | - | - |
|
| 937 |
+
| 0.1181 | 120 | 3.8327 | - | - | - | - |
|
| 938 |
+
| 0.1191 | 121 | 3.5103 | - | - | - | - |
|
| 939 |
+
| 0.1201 | 122 | 9.3158 | - | - | - | - |
|
| 940 |
+
| 0.1211 | 123 | 3.7201 | - | - | - | - |
|
| 941 |
+
| 0.1220 | 124 | 3.4311 | - | - | - | - |
|
| 942 |
+
| 0.1230 | 125 | 3.7946 | - | - | - | - |
|
| 943 |
+
| 0.1240 | 126 | 4.0456 | - | - | - | - |
|
| 944 |
+
| 0.125 | 127 | 3.482 | - | - | - | - |
|
| 945 |
+
| 0.1260 | 128 | 3.1901 | - | - | - | - |
|
| 946 |
+
| 0.1270 | 129 | 3.414 | - | - | - | - |
|
| 947 |
+
| 0.1280 | 130 | 3.4967 | - | - | - | - |
|
| 948 |
+
| 0.1289 | 131 | 3.6594 | - | - | - | - |
|
| 949 |
+
| 0.1299 | 132 | 8.066 | - | - | - | - |
|
| 950 |
+
| 0.1309 | 133 | 3.7872 | - | - | - | - |
|
| 951 |
+
| 0.1319 | 134 | 4.0023 | - | - | - | - |
|
| 952 |
+
| 0.1329 | 135 | 3.7728 | - | - | - | - |
|
| 953 |
+
| 0.1339 | 136 | 3.1893 | - | - | - | - |
|
| 954 |
+
| 0.1348 | 137 | 3.3635 | - | - | - | - |
|
| 955 |
+
| 0.1358 | 138 | 4.0195 | - | - | - | - |
|
| 956 |
+
| 0.1368 | 139 | 4.1097 | - | - | - | - |
|
| 957 |
+
| 0.1378 | 140 | 3.7903 | - | - | - | - |
|
| 958 |
+
| 0.1388 | 141 | 3.5748 | - | - | - | - |
|
| 959 |
+
| 0.1398 | 142 | 3.8104 | - | - | - | - |
|
| 960 |
+
| 0.1407 | 143 | 8.0411 | - | - | - | - |
|
| 961 |
+
| 0.1417 | 144 | 3.4819 | - | - | - | - |
|
| 962 |
+
| 0.1427 | 145 | 3.452 | - | - | - | - |
|
| 963 |
+
| 0.1437 | 146 | 3.5861 | - | - | - | - |
|
| 964 |
+
| 0.1447 | 147 | 3.4324 | - | - | - | - |
|
| 965 |
+
| 0.1457 | 148 | 3.521 | - | - | - | - |
|
| 966 |
+
| 0.1467 | 149 | 3.8868 | - | - | - | - |
|
| 967 |
+
| 0.1476 | 150 | 8.1191 | - | - | - | - |
|
| 968 |
+
| 0.1486 | 151 | 3.6447 | - | - | - | - |
|
| 969 |
+
| 0.1496 | 152 | 2.9436 | - | - | - | - |
|
| 970 |
+
| 0.1506 | 153 | 8.1535 | 2.2032 | 0.2236 | 0.4009 | 0.5892 |
|
| 971 |
+
| 0.1516 | 154 | 3.9619 | - | - | - | - |
|
| 972 |
+
| 0.1526 | 155 | 3.1301 | - | - | - | - |
|
| 973 |
+
| 0.1535 | 156 | 3.0478 | - | - | - | - |
|
| 974 |
+
| 0.1545 | 157 | 3.2986 | - | - | - | - |
|
| 975 |
+
| 0.1555 | 158 | 3.2847 | - | - | - | - |
|
| 976 |
+
| 0.1565 | 159 | 3.6599 | - | - | - | - |
|
| 977 |
+
| 0.1575 | 160 | 3.2238 | - | - | - | - |
|
| 978 |
+
| 0.1585 | 161 | 2.8897 | - | - | - | - |
|
| 979 |
+
| 0.1594 | 162 | 3.9443 | - | - | - | - |
|
| 980 |
+
| 0.1604 | 163 | 3.3733 | - | - | - | - |
|
| 981 |
+
| 0.1614 | 164 | 3.7444 | - | - | - | - |
|
| 982 |
+
| 0.1624 | 165 | 3.4813 | - | - | - | - |
|
| 983 |
+
| 0.1634 | 166 | 2.6865 | - | - | - | - |
|
| 984 |
+
| 0.1644 | 167 | 2.7587 | - | - | - | - |
|
| 985 |
+
| 0.1654 | 168 | 3.3628 | - | - | - | - |
|
| 986 |
+
| 0.1663 | 169 | 3.0035 | - | - | - | - |
|
| 987 |
+
| 0.1673 | 170 | 10.1591 | - | - | - | - |
|
| 988 |
+
| 0.1683 | 171 | 3.5366 | - | - | - | - |
|
| 989 |
+
| 0.1693 | 172 | 8.4047 | - | - | - | - |
|
| 990 |
+
| 0.1703 | 173 | 3.8643 | - | - | - | - |
|
| 991 |
+
| 0.1713 | 174 | 3.3529 | - | - | - | - |
|
| 992 |
+
| 0.1722 | 175 | 3.7143 | - | - | - | - |
|
| 993 |
+
| 0.1732 | 176 | 3.3323 | - | - | - | - |
|
| 994 |
+
| 0.1742 | 177 | 3.1206 | - | - | - | - |
|
| 995 |
+
| 0.1752 | 178 | 3.1348 | - | - | - | - |
|
| 996 |
+
| 0.1762 | 179 | 7.6011 | - | - | - | - |
|
| 997 |
+
| 0.1772 | 180 | 3.7025 | - | - | - | - |
|
| 998 |
+
| 0.1781 | 181 | 10.5662 | - | - | - | - |
|
| 999 |
+
| 0.1791 | 182 | 8.966 | - | - | - | - |
|
| 1000 |
+
| 0.1801 | 183 | 9.426 | - | - | - | - |
|
| 1001 |
+
| 0.1811 | 184 | 3.0025 | - | - | - | - |
|
| 1002 |
+
| 0.1821 | 185 | 7.0984 | - | - | - | - |
|
| 1003 |
+
| 0.1831 | 186 | 7.3808 | - | - | - | - |
|
| 1004 |
+
| 0.1841 | 187 | 2.8657 | - | - | - | - |
|
| 1005 |
+
| 0.1850 | 188 | 6.5636 | - | - | - | - |
|
| 1006 |
+
| 0.1860 | 189 | 3.4702 | - | - | - | - |
|
| 1007 |
+
| 0.1870 | 190 | 5.9302 | - | - | - | - |
|
| 1008 |
+
| 0.1880 | 191 | 3.2406 | - | - | - | - |
|
| 1009 |
+
| 0.1890 | 192 | 3.4459 | - | - | - | - |
|
| 1010 |
+
| 0.1900 | 193 | 5.269 | - | - | - | - |
|
| 1011 |
+
| 0.1909 | 194 | 4.8605 | - | - | - | - |
|
| 1012 |
+
| 0.1919 | 195 | 2.9891 | - | - | - | - |
|
| 1013 |
+
| 0.1929 | 196 | 3.6681 | - | - | - | - |
|
| 1014 |
+
| 0.1939 | 197 | 3.1589 | - | - | - | - |
|
| 1015 |
+
| 0.1949 | 198 | 3.1835 | - | - | - | - |
|
| 1016 |
+
| 0.1959 | 199 | 3.7561 | - | - | - | - |
|
| 1017 |
+
| 0.1969 | 200 | 4.0891 | - | - | - | - |
|
| 1018 |
+
| 0.1978 | 201 | 3.563 | - | - | - | - |
|
| 1019 |
+
| 0.1988 | 202 | 3.7433 | - | - | - | - |
|
| 1020 |
+
| 0.1998 | 203 | 3.3813 | - | - | - | - |
|
| 1021 |
+
| 0.2008 | 204 | 5.2311 | - | - | - | - |
|
| 1022 |
+
| 0.2018 | 205 | 3.3494 | - | - | - | - |
|
| 1023 |
+
| 0.2028 | 206 | 3.3533 | - | - | - | - |
|
| 1024 |
+
| 0.2037 | 207 | 3.688 | - | - | - | - |
|
| 1025 |
+
| 0.2047 | 208 | 3.5342 | - | - | - | - |
|
| 1026 |
+
| 0.2057 | 209 | 4.9381 | - | - | - | - |
|
| 1027 |
+
| 0.2067 | 210 | 3.1839 | - | - | - | - |
|
| 1028 |
+
| 0.2077 | 211 | 3.0465 | - | - | - | - |
|
| 1029 |
+
| 0.2087 | 212 | 3.1232 | - | - | - | - |
|
| 1030 |
+
| 0.2096 | 213 | 4.6297 | - | - | - | - |
|
| 1031 |
+
| 0.2106 | 214 | 2.9834 | - | - | - | - |
|
| 1032 |
+
| 0.2116 | 215 | 4.2231 | - | - | - | - |
|
| 1033 |
+
| 0.2126 | 216 | 3.1458 | - | - | - | - |
|
| 1034 |
+
| 0.2136 | 217 | 3.2525 | - | - | - | - |
|
| 1035 |
+
| 0.2146 | 218 | 3.5971 | - | - | - | - |
|
| 1036 |
+
| 0.2156 | 219 | 3.5616 | - | - | - | - |
|
| 1037 |
+
| 0.2165 | 220 | 3.2378 | - | - | - | - |
|
| 1038 |
+
| 0.2175 | 221 | 2.9075 | - | - | - | - |
|
| 1039 |
+
| 0.2185 | 222 | 3.0391 | - | - | - | - |
|
| 1040 |
+
| 0.2195 | 223 | 3.5573 | - | - | - | - |
|
| 1041 |
+
| 0.2205 | 224 | 3.2092 | - | - | - | - |
|
| 1042 |
+
| 0.2215 | 225 | 3.2646 | - | - | - | - |
|
| 1043 |
+
| 0.2224 | 226 | 3.0886 | - | - | - | - |
|
| 1044 |
+
| 0.2234 | 227 | 3.5241 | - | - | - | - |
|
| 1045 |
+
| 0.2244 | 228 | 3.0111 | - | - | - | - |
|
| 1046 |
+
| 0.2254 | 229 | 3.707 | - | - | - | - |
|
| 1047 |
+
| 0.2264 | 230 | 5.3822 | - | - | - | - |
|
| 1048 |
+
| 0.2274 | 231 | 3.2646 | - | - | - | - |
|
| 1049 |
+
| 0.2283 | 232 | 2.7021 | - | - | - | - |
|
| 1050 |
+
| 0.2293 | 233 | 3.5131 | - | - | - | - |
|
| 1051 |
+
| 0.2303 | 234 | 3.103 | - | - | - | - |
|
| 1052 |
+
| 0.2313 | 235 | 2.9535 | - | - | - | - |
|
| 1053 |
+
| 0.2323 | 236 | 2.9631 | - | - | - | - |
|
| 1054 |
+
| 0.2333 | 237 | 2.8068 | - | - | - | - |
|
| 1055 |
+
| 0.2343 | 238 | 3.4251 | - | - | - | - |
|
| 1056 |
+
| 0.2352 | 239 | 2.8495 | - | - | - | - |
|
| 1057 |
+
| 0.2362 | 240 | 2.9972 | - | - | - | - |
|
| 1058 |
+
| 0.2372 | 241 | 3.3509 | - | - | - | - |
|
| 1059 |
+
| 0.2382 | 242 | 2.9234 | - | - | - | - |
|
| 1060 |
+
| 0.2392 | 243 | 2.4086 | - | - | - | - |
|
| 1061 |
+
| 0.2402 | 244 | 3.1282 | - | - | - | - |
|
| 1062 |
+
| 0.2411 | 245 | 2.3352 | - | - | - | - |
|
| 1063 |
+
| 0.2421 | 246 | 2.4706 | - | - | - | - |
|
| 1064 |
+
| 0.2431 | 247 | 3.5449 | - | - | - | - |
|
| 1065 |
+
| 0.2441 | 248 | 2.8963 | - | - | - | - |
|
| 1066 |
+
| 0.2451 | 249 | 2.773 | - | - | - | - |
|
| 1067 |
+
| 0.2461 | 250 | 2.355 | - | - | - | - |
|
| 1068 |
+
| 0.2470 | 251 | 2.656 | - | - | - | - |
|
| 1069 |
+
| 0.2480 | 252 | 2.6221 | - | - | - | - |
|
| 1070 |
+
| 0.2490 | 253 | 8.6739 | - | - | - | - |
|
| 1071 |
+
| 0.25 | 254 | 10.8242 | - | - | - | - |
|
| 1072 |
+
| 0.2510 | 255 | 2.3408 | - | - | - | - |
|
| 1073 |
+
| 0.2520 | 256 | 2.1221 | - | - | - | - |
|
| 1074 |
+
| 0.2530 | 257 | 3.295 | - | - | - | - |
|
| 1075 |
+
| 0.2539 | 258 | 2.5896 | - | - | - | - |
|
| 1076 |
+
| 0.2549 | 259 | 2.1215 | - | - | - | - |
|
| 1077 |
+
| 0.2559 | 260 | 9.4851 | - | - | - | - |
|
| 1078 |
+
| 0.2569 | 261 | 2.1982 | - | - | - | - |
|
| 1079 |
+
| 0.2579 | 262 | 3.0568 | - | - | - | - |
|
| 1080 |
+
| 0.2589 | 263 | 2.6269 | - | - | - | - |
|
| 1081 |
+
| 0.2598 | 264 | 2.4792 | - | - | - | - |
|
| 1082 |
+
| 0.2608 | 265 | 1.9445 | - | - | - | - |
|
| 1083 |
+
| 0.2618 | 266 | 2.4061 | - | - | - | - |
|
| 1084 |
+
| 0.2628 | 267 | 8.3116 | - | - | - | - |
|
| 1085 |
+
| 0.2638 | 268 | 8.0804 | - | - | - | - |
|
| 1086 |
+
| 0.2648 | 269 | 2.1674 | - | - | - | - |
|
| 1087 |
+
| 0.2657 | 270 | 7.1975 | - | - | - | - |
|
| 1088 |
+
| 0.2667 | 271 | 5.9104 | - | - | - | - |
|
| 1089 |
+
| 0.2677 | 272 | 2.498 | - | - | - | - |
|
| 1090 |
+
| 0.2687 | 273 | 2.5249 | - | - | - | - |
|
| 1091 |
+
| 0.2697 | 274 | 2.7152 | - | - | - | - |
|
| 1092 |
+
| 0.2707 | 275 | 2.7904 | - | - | - | - |
|
| 1093 |
+
| 0.2717 | 276 | 2.7745 | - | - | - | - |
|
| 1094 |
+
| 0.2726 | 277 | 2.9741 | - | - | - | - |
|
| 1095 |
+
| 0.2736 | 278 | 1.8215 | - | - | - | - |
|
| 1096 |
+
| 0.2746 | 279 | 4.6844 | - | - | - | - |
|
| 1097 |
+
| 0.2756 | 280 | 2.8613 | - | - | - | - |
|
| 1098 |
+
| 0.2766 | 281 | 2.7147 | - | - | - | - |
|
| 1099 |
+
| 0.2776 | 282 | 2.814 | - | - | - | - |
|
| 1100 |
+
| 0.2785 | 283 | 2.3569 | - | - | - | - |
|
| 1101 |
+
| 0.2795 | 284 | 2.672 | - | - | - | - |
|
| 1102 |
+
| 0.2805 | 285 | 3.2052 | - | - | - | - |
|
| 1103 |
+
| 0.2815 | 286 | 2.8056 | - | - | - | - |
|
| 1104 |
+
| 0.2825 | 287 | 2.6268 | - | - | - | - |
|
| 1105 |
+
| 0.2835 | 288 | 2.5641 | - | - | - | - |
|
| 1106 |
+
| 0.2844 | 289 | 2.4475 | - | - | - | - |
|
| 1107 |
+
| 0.2854 | 290 | 2.7377 | - | - | - | - |
|
| 1108 |
+
| 0.2864 | 291 | 2.3831 | - | - | - | - |
|
| 1109 |
+
| 0.2874 | 292 | 8.8069 | - | - | - | - |
|
| 1110 |
+
| 0.2884 | 293 | 2.186 | - | - | - | - |
|
| 1111 |
+
| 0.2894 | 294 | 2.3389 | - | - | - | - |
|
| 1112 |
+
| 0.2904 | 295 | 1.9744 | - | - | - | - |
|
| 1113 |
+
| 0.2913 | 296 | 2.4491 | - | - | - | - |
|
| 1114 |
+
| 0.2923 | 297 | 2.5668 | - | - | - | - |
|
| 1115 |
+
| 0.2933 | 298 | 2.1939 | - | - | - | - |
|
| 1116 |
+
| 0.2943 | 299 | 2.2832 | - | - | - | - |
|
| 1117 |
+
| 0.2953 | 300 | 2.7508 | - | - | - | - |
|
| 1118 |
+
| 0.2963 | 301 | 2.5206 | - | - | - | - |
|
| 1119 |
+
| 0.2972 | 302 | 2.3522 | - | - | - | - |
|
| 1120 |
+
| 0.2982 | 303 | 2.7186 | - | - | - | - |
|
| 1121 |
+
| 0.2992 | 304 | 2.1369 | - | - | - | - |
|
| 1122 |
+
| 0.3002 | 305 | 9.7972 | - | - | - | - |
|
| 1123 |
+
|
| 1124 |
+
</details>
|
| 1125 |
+
|
| 1126 |
+
### Framework Versions
|
| 1127 |
+
- Python: 3.10.12
|
| 1128 |
+
- Sentence Transformers: 3.2.1
|
| 1129 |
+
- Transformers: 4.44.2
|
| 1130 |
+
- PyTorch: 2.5.0+cu121
|
| 1131 |
+
- Accelerate: 0.34.2
|
| 1132 |
+
- Datasets: 3.0.2
|
| 1133 |
+
- Tokenizers: 0.19.1
|
| 1134 |
+
|
| 1135 |
+
## Citation
|
| 1136 |
+
|
| 1137 |
+
### BibTeX
|
| 1138 |
+
|
| 1139 |
+
#### Sentence Transformers
|
| 1140 |
+
```bibtex
|
| 1141 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1142 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1143 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1144 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1145 |
+
month = "11",
|
| 1146 |
+
year = "2019",
|
| 1147 |
+
publisher = "Association for Computational Linguistics",
|
| 1148 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1149 |
+
}
|
| 1150 |
+
```
|
| 1151 |
+
|
| 1152 |
+
#### GISTEmbedLoss
|
| 1153 |
+
```bibtex
|
| 1154 |
+
@misc{solatorio2024gistembed,
|
| 1155 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1156 |
+
author={Aivin V. Solatorio},
|
| 1157 |
+
year={2024},
|
| 1158 |
+
eprint={2402.16829},
|
| 1159 |
+
archivePrefix={arXiv},
|
| 1160 |
+
primaryClass={cs.LG}
|
| 1161 |
+
}
|
| 1162 |
+
```
|
| 1163 |
+
|
| 1164 |
+
<!--
|
| 1165 |
+
## Glossary
|
| 1166 |
+
|
| 1167 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1168 |
+
-->
|
| 1169 |
+
|
| 1170 |
+
<!--
|
| 1171 |
+
## Model Card Authors
|
| 1172 |
+
|
| 1173 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1174 |
+
-->
|
| 1175 |
+
|
| 1176 |
+
<!--
|
| 1177 |
+
## Model Card Contact
|
| 1178 |
+
|
| 1179 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1180 |
+
-->
|
checkpoint-305/added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[MASK]": 128000
|
| 3 |
+
}
|
checkpoint-305/config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DebertaV2Model"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 768,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 3072,
|
| 12 |
+
"layer_norm_eps": 1e-07,
|
| 13 |
+
"max_position_embeddings": 512,
|
| 14 |
+
"max_relative_positions": -1,
|
| 15 |
+
"model_type": "deberta-v2",
|
| 16 |
+
"norm_rel_ebd": "layer_norm",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"pooler_dropout": 0,
|
| 21 |
+
"pooler_hidden_act": "gelu",
|
| 22 |
+
"pooler_hidden_size": 768,
|
| 23 |
+
"pos_att_type": [
|
| 24 |
+
"p2c",
|
| 25 |
+
"c2p"
|
| 26 |
+
],
|
| 27 |
+
"position_biased_input": false,
|
| 28 |
+
"position_buckets": 256,
|
| 29 |
+
"relative_attention": true,
|
| 30 |
+
"share_att_key": true,
|
| 31 |
+
"torch_dtype": "float32",
|
| 32 |
+
"transformers_version": "4.44.2",
|
| 33 |
+
"type_vocab_size": 0,
|
| 34 |
+
"vocab_size": 128100
|
| 35 |
+
}
|
checkpoint-305/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.2.1",
|
| 4 |
+
"transformers": "4.44.2",
|
| 5 |
+
"pytorch": "2.5.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
checkpoint-305/modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_AdvancedWeightedPooling",
|
| 12 |
+
"type": "__main__.AdvancedWeightedPooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
checkpoint-305/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65d529ba9ab24c9d8adb080544039e1a708aa68d1217c8ee4a7a1fba3aab6ef7
|
| 3 |
+
size 151299002
|
checkpoint-305/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a57c90603cd53748313e111bacadbca362be5ab2596e4cc509d8f0c45cd399ec
|
| 3 |
+
size 565251810
|
checkpoint-305/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:253b239ce62b42cce45af0a6b6211997a8c98938b54440533396c5907de9bf77
|
| 3 |
+
size 14180
|
checkpoint-305/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e92a39523463434c6815f5d795ae20b59b2f4d483e4b38fb95e050b91044805
|
| 3 |
+
size 1256
|
checkpoint-305/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-305/special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "[CLS]",
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"eos_token": "[SEP]",
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"pad_token": "[PAD]",
|
| 7 |
+
"sep_token": "[SEP]",
|
| 8 |
+
"unk_token": {
|
| 9 |
+
"content": "[UNK]",
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"normalized": true,
|
| 12 |
+
"rstrip": false,
|
| 13 |
+
"single_word": false
|
| 14 |
+
}
|
| 15 |
+
}
|
checkpoint-305/spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
| 3 |
+
size 2464616
|
checkpoint-305/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-305/tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[CLS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[SEP]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128000": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "[CLS]",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "[CLS]",
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"eos_token": "[SEP]",
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"sp_model_kwargs": {},
|
| 54 |
+
"split_by_punct": false,
|
| 55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
| 56 |
+
"unk_token": "[UNK]",
|
| 57 |
+
"vocab_type": "spm"
|
| 58 |
+
}
|
checkpoint-305/trainer_state.json
ADDED
|
@@ -0,0 +1,2257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.3001968503937008,
|
| 5 |
+
"eval_steps": 153,
|
| 6 |
+
"global_step": 305,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.000984251968503937,
|
| 13 |
+
"grad_norm": NaN,
|
| 14 |
+
"learning_rate": 0.0,
|
| 15 |
+
"loss": 4.9603,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.001968503937007874,
|
| 20 |
+
"grad_norm": NaN,
|
| 21 |
+
"learning_rate": 0.0,
|
| 22 |
+
"loss": 28.2529,
|
| 23 |
+
"step": 2
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.002952755905511811,
|
| 27 |
+
"grad_norm": Infinity,
|
| 28 |
+
"learning_rate": 0.0,
|
| 29 |
+
"loss": 27.6365,
|
| 30 |
+
"step": 3
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.003937007874015748,
|
| 34 |
+
"grad_norm": 36.58856201171875,
|
| 35 |
+
"learning_rate": 9.940357852882705e-10,
|
| 36 |
+
"loss": 6.1387,
|
| 37 |
+
"step": 4
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.004921259842519685,
|
| 41 |
+
"grad_norm": 34.671714782714844,
|
| 42 |
+
"learning_rate": 1.988071570576541e-09,
|
| 43 |
+
"loss": 5.5753,
|
| 44 |
+
"step": 5
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.005905511811023622,
|
| 48 |
+
"grad_norm": 35.53398132324219,
|
| 49 |
+
"learning_rate": 2.9821073558648116e-09,
|
| 50 |
+
"loss": 5.6951,
|
| 51 |
+
"step": 6
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.006889763779527559,
|
| 55 |
+
"grad_norm": Infinity,
|
| 56 |
+
"learning_rate": 2.9821073558648116e-09,
|
| 57 |
+
"loss": 6.3533,
|
| 58 |
+
"step": 7
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.007874015748031496,
|
| 62 |
+
"grad_norm": Infinity,
|
| 63 |
+
"learning_rate": 2.9821073558648116e-09,
|
| 64 |
+
"loss": 27.3848,
|
| 65 |
+
"step": 8
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.008858267716535433,
|
| 69 |
+
"grad_norm": 16.95815086364746,
|
| 70 |
+
"learning_rate": 3.976143141153082e-09,
|
| 71 |
+
"loss": 3.8501,
|
| 72 |
+
"step": 9
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.00984251968503937,
|
| 76 |
+
"grad_norm": 69.63166046142578,
|
| 77 |
+
"learning_rate": 4.970178926441353e-09,
|
| 78 |
+
"loss": 27.911,
|
| 79 |
+
"step": 10
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.010826771653543307,
|
| 83 |
+
"grad_norm": 29.516401290893555,
|
| 84 |
+
"learning_rate": 5.964214711729623e-09,
|
| 85 |
+
"loss": 4.9042,
|
| 86 |
+
"step": 11
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.011811023622047244,
|
| 90 |
+
"grad_norm": 39.30358123779297,
|
| 91 |
+
"learning_rate": 6.9582504970178946e-09,
|
| 92 |
+
"loss": 6.8003,
|
| 93 |
+
"step": 12
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.012795275590551181,
|
| 97 |
+
"grad_norm": 36.83983612060547,
|
| 98 |
+
"learning_rate": 7.952286282306164e-09,
|
| 99 |
+
"loss": 5.7317,
|
| 100 |
+
"step": 13
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.013779527559055118,
|
| 104 |
+
"grad_norm": 55.4377326965332,
|
| 105 |
+
"learning_rate": 8.946322067594435e-09,
|
| 106 |
+
"loss": 20.261,
|
| 107 |
+
"step": 14
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.014763779527559055,
|
| 111 |
+
"grad_norm": 68.62684631347656,
|
| 112 |
+
"learning_rate": 9.940357852882705e-09,
|
| 113 |
+
"loss": 27.9051,
|
| 114 |
+
"step": 15
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.015748031496062992,
|
| 118 |
+
"grad_norm": 31.27193832397461,
|
| 119 |
+
"learning_rate": 1.0934393638170978e-08,
|
| 120 |
+
"loss": 5.5959,
|
| 121 |
+
"step": 16
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.01673228346456693,
|
| 125 |
+
"grad_norm": 36.56179428100586,
|
| 126 |
+
"learning_rate": 1.1928429423459246e-08,
|
| 127 |
+
"loss": 5.8052,
|
| 128 |
+
"step": 17
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.017716535433070866,
|
| 132 |
+
"grad_norm": 23.220964431762695,
|
| 133 |
+
"learning_rate": 1.2922465208747517e-08,
|
| 134 |
+
"loss": 4.5088,
|
| 135 |
+
"step": 18
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.018700787401574805,
|
| 139 |
+
"grad_norm": 44.375823974609375,
|
| 140 |
+
"learning_rate": 1.3916500994035789e-08,
|
| 141 |
+
"loss": 7.3472,
|
| 142 |
+
"step": 19
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.01968503937007874,
|
| 146 |
+
"grad_norm": 40.480628967285156,
|
| 147 |
+
"learning_rate": 1.4910536779324056e-08,
|
| 148 |
+
"loss": 5.8668,
|
| 149 |
+
"step": 20
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.02066929133858268,
|
| 153 |
+
"grad_norm": 45.778358459472656,
|
| 154 |
+
"learning_rate": 1.590457256461233e-08,
|
| 155 |
+
"loss": 6.4083,
|
| 156 |
+
"step": 21
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.021653543307086614,
|
| 160 |
+
"grad_norm": 41.16820526123047,
|
| 161 |
+
"learning_rate": 1.68986083499006e-08,
|
| 162 |
+
"loss": 6.011,
|
| 163 |
+
"step": 22
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.022637795275590553,
|
| 167 |
+
"grad_norm": 27.49931526184082,
|
| 168 |
+
"learning_rate": 1.789264413518887e-08,
|
| 169 |
+
"loss": 5.2394,
|
| 170 |
+
"step": 23
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.023622047244094488,
|
| 174 |
+
"grad_norm": 20.837919235229492,
|
| 175 |
+
"learning_rate": 1.888667992047714e-08,
|
| 176 |
+
"loss": 4.2966,
|
| 177 |
+
"step": 24
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.024606299212598427,
|
| 181 |
+
"grad_norm": 65.7834243774414,
|
| 182 |
+
"learning_rate": 1.988071570576541e-08,
|
| 183 |
+
"loss": 26.605,
|
| 184 |
+
"step": 25
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.025590551181102362,
|
| 188 |
+
"grad_norm": 44.794960021972656,
|
| 189 |
+
"learning_rate": 2.087475149105368e-08,
|
| 190 |
+
"loss": 6.2067,
|
| 191 |
+
"step": 26
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.0265748031496063,
|
| 195 |
+
"grad_norm": 30.213058471679688,
|
| 196 |
+
"learning_rate": 2.1868787276341955e-08,
|
| 197 |
+
"loss": 6.0346,
|
| 198 |
+
"step": 27
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.027559055118110236,
|
| 202 |
+
"grad_norm": 27.49605941772461,
|
| 203 |
+
"learning_rate": 2.2862823061630224e-08,
|
| 204 |
+
"loss": 5.4676,
|
| 205 |
+
"step": 28
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.028543307086614175,
|
| 209 |
+
"grad_norm": 35.94675827026367,
|
| 210 |
+
"learning_rate": 2.3856858846918493e-08,
|
| 211 |
+
"loss": 6.4292,
|
| 212 |
+
"step": 29
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.02952755905511811,
|
| 216 |
+
"grad_norm": 65.74870300292969,
|
| 217 |
+
"learning_rate": 2.4850894632206765e-08,
|
| 218 |
+
"loss": 26.6452,
|
| 219 |
+
"step": 30
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.03051181102362205,
|
| 223 |
+
"grad_norm": 49.05170440673828,
|
| 224 |
+
"learning_rate": 2.5844930417495034e-08,
|
| 225 |
+
"loss": 18.8401,
|
| 226 |
+
"step": 31
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.031496062992125984,
|
| 230 |
+
"grad_norm": 49.38396453857422,
|
| 231 |
+
"learning_rate": 2.6838966202783303e-08,
|
| 232 |
+
"loss": 7.4531,
|
| 233 |
+
"step": 32
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.03248031496062992,
|
| 237 |
+
"grad_norm": 25.29888916015625,
|
| 238 |
+
"learning_rate": 2.7833001988071578e-08,
|
| 239 |
+
"loss": 4.8286,
|
| 240 |
+
"step": 33
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.03346456692913386,
|
| 244 |
+
"grad_norm": 28.889131546020508,
|
| 245 |
+
"learning_rate": 2.8827037773359847e-08,
|
| 246 |
+
"loss": 5.0078,
|
| 247 |
+
"step": 34
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.0344488188976378,
|
| 251 |
+
"grad_norm": 33.611812591552734,
|
| 252 |
+
"learning_rate": 2.982107355864811e-08,
|
| 253 |
+
"loss": 5.4115,
|
| 254 |
+
"step": 35
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.03543307086614173,
|
| 258 |
+
"grad_norm": 31.503385543823242,
|
| 259 |
+
"learning_rate": 3.081510934393639e-08,
|
| 260 |
+
"loss": 5.4196,
|
| 261 |
+
"step": 36
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.03641732283464567,
|
| 265 |
+
"grad_norm": 23.436307907104492,
|
| 266 |
+
"learning_rate": 3.180914512922466e-08,
|
| 267 |
+
"loss": 4.5023,
|
| 268 |
+
"step": 37
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.03740157480314961,
|
| 272 |
+
"grad_norm": 35.096893310546875,
|
| 273 |
+
"learning_rate": 3.280318091451293e-08,
|
| 274 |
+
"loss": 5.376,
|
| 275 |
+
"step": 38
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.038385826771653545,
|
| 279 |
+
"grad_norm": 25.531570434570312,
|
| 280 |
+
"learning_rate": 3.37972166998012e-08,
|
| 281 |
+
"loss": 5.2303,
|
| 282 |
+
"step": 39
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.03937007874015748,
|
| 286 |
+
"grad_norm": 29.393512725830078,
|
| 287 |
+
"learning_rate": 3.479125248508947e-08,
|
| 288 |
+
"loss": 5.6694,
|
| 289 |
+
"step": 40
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.040354330708661415,
|
| 293 |
+
"grad_norm": 26.839847564697266,
|
| 294 |
+
"learning_rate": 3.578528827037774e-08,
|
| 295 |
+
"loss": 4.7825,
|
| 296 |
+
"step": 41
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.04133858267716536,
|
| 300 |
+
"grad_norm": 21.11309814453125,
|
| 301 |
+
"learning_rate": 3.6779324055666005e-08,
|
| 302 |
+
"loss": 4.6507,
|
| 303 |
+
"step": 42
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.04232283464566929,
|
| 307 |
+
"grad_norm": 61.134098052978516,
|
| 308 |
+
"learning_rate": 3.777335984095428e-08,
|
| 309 |
+
"loss": 24.2072,
|
| 310 |
+
"step": 43
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.04330708661417323,
|
| 314 |
+
"grad_norm": 26.884740829467773,
|
| 315 |
+
"learning_rate": 3.8767395626242556e-08,
|
| 316 |
+
"loss": 4.9285,
|
| 317 |
+
"step": 44
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.04429133858267716,
|
| 321 |
+
"grad_norm": 33.500144958496094,
|
| 322 |
+
"learning_rate": 3.976143141153082e-08,
|
| 323 |
+
"loss": 6.326,
|
| 324 |
+
"step": 45
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.045275590551181105,
|
| 328 |
+
"grad_norm": 17.54262924194336,
|
| 329 |
+
"learning_rate": 4.0755467196819094e-08,
|
| 330 |
+
"loss": 4.5724,
|
| 331 |
+
"step": 46
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.04625984251968504,
|
| 335 |
+
"grad_norm": 23.30596351623535,
|
| 336 |
+
"learning_rate": 4.174950298210736e-08,
|
| 337 |
+
"loss": 4.754,
|
| 338 |
+
"step": 47
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.047244094488188976,
|
| 342 |
+
"grad_norm": 34.042816162109375,
|
| 343 |
+
"learning_rate": 4.274353876739563e-08,
|
| 344 |
+
"loss": 5.5443,
|
| 345 |
+
"step": 48
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.04822834645669291,
|
| 349 |
+
"grad_norm": 21.270071029663086,
|
| 350 |
+
"learning_rate": 4.373757455268391e-08,
|
| 351 |
+
"loss": 4.5764,
|
| 352 |
+
"step": 49
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.04921259842519685,
|
| 356 |
+
"grad_norm": 24.815349578857422,
|
| 357 |
+
"learning_rate": 4.4731610337972176e-08,
|
| 358 |
+
"loss": 5.1434,
|
| 359 |
+
"step": 50
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.05019685039370079,
|
| 363 |
+
"grad_norm": 55.756900787353516,
|
| 364 |
+
"learning_rate": 4.572564612326045e-08,
|
| 365 |
+
"loss": 22.6991,
|
| 366 |
+
"step": 51
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.051181102362204724,
|
| 370 |
+
"grad_norm": 23.544273376464844,
|
| 371 |
+
"learning_rate": 4.6719681908548713e-08,
|
| 372 |
+
"loss": 5.4277,
|
| 373 |
+
"step": 52
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.05216535433070866,
|
| 377 |
+
"grad_norm": 21.845703125,
|
| 378 |
+
"learning_rate": 4.7713717693836986e-08,
|
| 379 |
+
"loss": 5.0178,
|
| 380 |
+
"step": 53
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.0531496062992126,
|
| 384 |
+
"grad_norm": 16.331026077270508,
|
| 385 |
+
"learning_rate": 4.870775347912525e-08,
|
| 386 |
+
"loss": 4.8779,
|
| 387 |
+
"step": 54
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.054133858267716536,
|
| 391 |
+
"grad_norm": 16.72958755493164,
|
| 392 |
+
"learning_rate": 4.970178926441353e-08,
|
| 393 |
+
"loss": 4.2884,
|
| 394 |
+
"step": 55
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.05511811023622047,
|
| 398 |
+
"grad_norm": 41.22899627685547,
|
| 399 |
+
"learning_rate": 5.06958250497018e-08,
|
| 400 |
+
"loss": 16.0994,
|
| 401 |
+
"step": 56
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.05610236220472441,
|
| 405 |
+
"grad_norm": 52.578941345214844,
|
| 406 |
+
"learning_rate": 5.168986083499007e-08,
|
| 407 |
+
"loss": 21.31,
|
| 408 |
+
"step": 57
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.05708661417322835,
|
| 412 |
+
"grad_norm": 15.741512298583984,
|
| 413 |
+
"learning_rate": 5.268389662027834e-08,
|
| 414 |
+
"loss": 4.9721,
|
| 415 |
+
"step": 58
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.058070866141732284,
|
| 419 |
+
"grad_norm": 23.57728385925293,
|
| 420 |
+
"learning_rate": 5.3677932405566605e-08,
|
| 421 |
+
"loss": 5.143,
|
| 422 |
+
"step": 59
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.05905511811023622,
|
| 426 |
+
"grad_norm": 12.699495315551758,
|
| 427 |
+
"learning_rate": 5.467196819085488e-08,
|
| 428 |
+
"loss": 3.5933,
|
| 429 |
+
"step": 60
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.060039370078740155,
|
| 433 |
+
"grad_norm": 17.49776840209961,
|
| 434 |
+
"learning_rate": 5.5666003976143156e-08,
|
| 435 |
+
"loss": 5.2559,
|
| 436 |
+
"step": 61
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.0610236220472441,
|
| 440 |
+
"grad_norm": 13.251837730407715,
|
| 441 |
+
"learning_rate": 5.666003976143142e-08,
|
| 442 |
+
"loss": 4.0757,
|
| 443 |
+
"step": 62
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.06200787401574803,
|
| 447 |
+
"grad_norm": 11.610112190246582,
|
| 448 |
+
"learning_rate": 5.7654075546719694e-08,
|
| 449 |
+
"loss": 3.6612,
|
| 450 |
+
"step": 63
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.06299212598425197,
|
| 454 |
+
"grad_norm": 19.652385711669922,
|
| 455 |
+
"learning_rate": 5.864811133200796e-08,
|
| 456 |
+
"loss": 4.7505,
|
| 457 |
+
"step": 64
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.0639763779527559,
|
| 461 |
+
"grad_norm": 13.930652618408203,
|
| 462 |
+
"learning_rate": 5.964214711729623e-08,
|
| 463 |
+
"loss": 4.1979,
|
| 464 |
+
"step": 65
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.06496062992125984,
|
| 468 |
+
"grad_norm": 11.817291259765625,
|
| 469 |
+
"learning_rate": 6.06361829025845e-08,
|
| 470 |
+
"loss": 3.9982,
|
| 471 |
+
"step": 66
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.06594488188976377,
|
| 475 |
+
"grad_norm": 18.6019287109375,
|
| 476 |
+
"learning_rate": 6.163021868787278e-08,
|
| 477 |
+
"loss": 4.7065,
|
| 478 |
+
"step": 67
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.06692913385826772,
|
| 482 |
+
"grad_norm": 27.056259155273438,
|
| 483 |
+
"learning_rate": 6.262425447316104e-08,
|
| 484 |
+
"loss": 5.3413,
|
| 485 |
+
"step": 68
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.06791338582677166,
|
| 489 |
+
"grad_norm": 13.010573387145996,
|
| 490 |
+
"learning_rate": 6.361829025844931e-08,
|
| 491 |
+
"loss": 3.6964,
|
| 492 |
+
"step": 69
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.0688976377952756,
|
| 496 |
+
"grad_norm": 49.04872131347656,
|
| 497 |
+
"learning_rate": 6.461232604373759e-08,
|
| 498 |
+
"loss": 17.8774,
|
| 499 |
+
"step": 70
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.06988188976377953,
|
| 503 |
+
"grad_norm": 19.028602600097656,
|
| 504 |
+
"learning_rate": 6.560636182902586e-08,
|
| 505 |
+
"loss": 4.8154,
|
| 506 |
+
"step": 71
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.07086614173228346,
|
| 510 |
+
"grad_norm": 17.006460189819336,
|
| 511 |
+
"learning_rate": 6.660039761431412e-08,
|
| 512 |
+
"loss": 4.8356,
|
| 513 |
+
"step": 72
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.0718503937007874,
|
| 517 |
+
"grad_norm": 17.15074920654297,
|
| 518 |
+
"learning_rate": 6.75944333996024e-08,
|
| 519 |
+
"loss": 4.568,
|
| 520 |
+
"step": 73
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.07283464566929133,
|
| 524 |
+
"grad_norm": 14.456765174865723,
|
| 525 |
+
"learning_rate": 6.858846918489067e-08,
|
| 526 |
+
"loss": 4.0898,
|
| 527 |
+
"step": 74
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.07381889763779527,
|
| 531 |
+
"grad_norm": 9.999987602233887,
|
| 532 |
+
"learning_rate": 6.958250497017893e-08,
|
| 533 |
+
"loss": 3.4502,
|
| 534 |
+
"step": 75
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.07480314960629922,
|
| 538 |
+
"grad_norm": 13.652220726013184,
|
| 539 |
+
"learning_rate": 7.057654075546721e-08,
|
| 540 |
+
"loss": 3.7733,
|
| 541 |
+
"step": 76
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.07578740157480315,
|
| 545 |
+
"grad_norm": 17.76757049560547,
|
| 546 |
+
"learning_rate": 7.157057654075548e-08,
|
| 547 |
+
"loss": 4.5204,
|
| 548 |
+
"step": 77
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.07677165354330709,
|
| 552 |
+
"grad_norm": 11.42149829864502,
|
| 553 |
+
"learning_rate": 7.256461232604374e-08,
|
| 554 |
+
"loss": 4.2526,
|
| 555 |
+
"step": 78
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.07775590551181102,
|
| 559 |
+
"grad_norm": 16.21160125732422,
|
| 560 |
+
"learning_rate": 7.355864811133201e-08,
|
| 561 |
+
"loss": 4.4398,
|
| 562 |
+
"step": 79
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.07874015748031496,
|
| 566 |
+
"grad_norm": 12.522687911987305,
|
| 567 |
+
"learning_rate": 7.455268389662029e-08,
|
| 568 |
+
"loss": 4.0988,
|
| 569 |
+
"step": 80
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.0797244094488189,
|
| 573 |
+
"grad_norm": 12.63741683959961,
|
| 574 |
+
"learning_rate": 7.554671968190855e-08,
|
| 575 |
+
"loss": 3.9704,
|
| 576 |
+
"step": 81
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.08070866141732283,
|
| 580 |
+
"grad_norm": 11.259520530700684,
|
| 581 |
+
"learning_rate": 7.654075546719683e-08,
|
| 582 |
+
"loss": 4.3343,
|
| 583 |
+
"step": 82
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.08169291338582677,
|
| 587 |
+
"grad_norm": 14.228102684020996,
|
| 588 |
+
"learning_rate": 7.753479125248511e-08,
|
| 589 |
+
"loss": 4.2587,
|
| 590 |
+
"step": 83
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.08267716535433071,
|
| 594 |
+
"grad_norm": 45.13947677612305,
|
| 595 |
+
"learning_rate": 7.852882703777338e-08,
|
| 596 |
+
"loss": 15.0149,
|
| 597 |
+
"step": 84
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.08366141732283465,
|
| 601 |
+
"grad_norm": 45.17081069946289,
|
| 602 |
+
"learning_rate": 7.952286282306164e-08,
|
| 603 |
+
"loss": 14.6599,
|
| 604 |
+
"step": 85
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.08464566929133858,
|
| 608 |
+
"grad_norm": 15.967412948608398,
|
| 609 |
+
"learning_rate": 8.051689860834992e-08,
|
| 610 |
+
"loss": 4.0623,
|
| 611 |
+
"step": 86
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.08562992125984252,
|
| 615 |
+
"grad_norm": 10.085712432861328,
|
| 616 |
+
"learning_rate": 8.151093439363819e-08,
|
| 617 |
+
"loss": 3.7597,
|
| 618 |
+
"step": 87
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.08661417322834646,
|
| 622 |
+
"grad_norm": 13.406641960144043,
|
| 623 |
+
"learning_rate": 8.250497017892645e-08,
|
| 624 |
+
"loss": 4.3433,
|
| 625 |
+
"step": 88
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.08759842519685039,
|
| 629 |
+
"grad_norm": 9.052105903625488,
|
| 630 |
+
"learning_rate": 8.349900596421472e-08,
|
| 631 |
+
"loss": 4.0287,
|
| 632 |
+
"step": 89
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.08858267716535433,
|
| 636 |
+
"grad_norm": 12.489309310913086,
|
| 637 |
+
"learning_rate": 8.4493041749503e-08,
|
| 638 |
+
"loss": 4.6257,
|
| 639 |
+
"step": 90
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.08956692913385826,
|
| 643 |
+
"grad_norm": 40.478675842285156,
|
| 644 |
+
"learning_rate": 8.548707753479126e-08,
|
| 645 |
+
"loss": 13.4689,
|
| 646 |
+
"step": 91
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 0.09055118110236221,
|
| 650 |
+
"grad_norm": 14.329568862915039,
|
| 651 |
+
"learning_rate": 8.648111332007953e-08,
|
| 652 |
+
"loss": 4.6583,
|
| 653 |
+
"step": 92
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 0.09153543307086615,
|
| 657 |
+
"grad_norm": 10.07358455657959,
|
| 658 |
+
"learning_rate": 8.747514910536782e-08,
|
| 659 |
+
"loss": 4.2682,
|
| 660 |
+
"step": 93
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.09251968503937008,
|
| 664 |
+
"grad_norm": 12.861531257629395,
|
| 665 |
+
"learning_rate": 8.846918489065609e-08,
|
| 666 |
+
"loss": 4.468,
|
| 667 |
+
"step": 94
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.09350393700787402,
|
| 671 |
+
"grad_norm": 12.121801376342773,
|
| 672 |
+
"learning_rate": 8.946322067594435e-08,
|
| 673 |
+
"loss": 3.4333,
|
| 674 |
+
"step": 95
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 0.09448818897637795,
|
| 678 |
+
"grad_norm": 40.14929962158203,
|
| 679 |
+
"learning_rate": 9.045725646123262e-08,
|
| 680 |
+
"loss": 12.7654,
|
| 681 |
+
"step": 96
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.09547244094488189,
|
| 685 |
+
"grad_norm": 11.191559791564941,
|
| 686 |
+
"learning_rate": 9.14512922465209e-08,
|
| 687 |
+
"loss": 3.5577,
|
| 688 |
+
"step": 97
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 0.09645669291338582,
|
| 692 |
+
"grad_norm": 40.13950729370117,
|
| 693 |
+
"learning_rate": 9.244532803180916e-08,
|
| 694 |
+
"loss": 12.5875,
|
| 695 |
+
"step": 98
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 0.09744094488188976,
|
| 699 |
+
"grad_norm": 12.063894271850586,
|
| 700 |
+
"learning_rate": 9.343936381709743e-08,
|
| 701 |
+
"loss": 4.2206,
|
| 702 |
+
"step": 99
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.0984251968503937,
|
| 706 |
+
"grad_norm": 10.066577911376953,
|
| 707 |
+
"learning_rate": 9.44333996023857e-08,
|
| 708 |
+
"loss": 3.5981,
|
| 709 |
+
"step": 100
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 0.09940944881889764,
|
| 713 |
+
"grad_norm": 10.917841911315918,
|
| 714 |
+
"learning_rate": 9.542743538767397e-08,
|
| 715 |
+
"loss": 3.5575,
|
| 716 |
+
"step": 101
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 0.10039370078740158,
|
| 720 |
+
"grad_norm": 11.512818336486816,
|
| 721 |
+
"learning_rate": 9.642147117296224e-08,
|
| 722 |
+
"loss": 4.0271,
|
| 723 |
+
"step": 102
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.10137795275590551,
|
| 727 |
+
"grad_norm": 13.737354278564453,
|
| 728 |
+
"learning_rate": 9.74155069582505e-08,
|
| 729 |
+
"loss": 4.0803,
|
| 730 |
+
"step": 103
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.10236220472440945,
|
| 734 |
+
"grad_norm": 12.92113208770752,
|
| 735 |
+
"learning_rate": 9.840954274353878e-08,
|
| 736 |
+
"loss": 4.0886,
|
| 737 |
+
"step": 104
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 0.10334645669291338,
|
| 741 |
+
"grad_norm": 16.23849868774414,
|
| 742 |
+
"learning_rate": 9.940357852882706e-08,
|
| 743 |
+
"loss": 4.176,
|
| 744 |
+
"step": 105
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 0.10433070866141732,
|
| 748 |
+
"grad_norm": 13.244183540344238,
|
| 749 |
+
"learning_rate": 1.0039761431411533e-07,
|
| 750 |
+
"loss": 4.6653,
|
| 751 |
+
"step": 106
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 0.10531496062992125,
|
| 755 |
+
"grad_norm": 12.089069366455078,
|
| 756 |
+
"learning_rate": 1.013916500994036e-07,
|
| 757 |
+
"loss": 4.3076,
|
| 758 |
+
"step": 107
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 0.1062992125984252,
|
| 762 |
+
"grad_norm": 28.261154174804688,
|
| 763 |
+
"learning_rate": 1.0238568588469187e-07,
|
| 764 |
+
"loss": 8.7282,
|
| 765 |
+
"step": 108
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.10728346456692914,
|
| 769 |
+
"grad_norm": 10.686351776123047,
|
| 770 |
+
"learning_rate": 1.0337972166998014e-07,
|
| 771 |
+
"loss": 3.4192,
|
| 772 |
+
"step": 109
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.10826771653543307,
|
| 776 |
+
"grad_norm": 41.12674331665039,
|
| 777 |
+
"learning_rate": 1.043737574552684e-07,
|
| 778 |
+
"loss": 10.6027,
|
| 779 |
+
"step": 110
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.10925196850393701,
|
| 783 |
+
"grad_norm": 13.403799057006836,
|
| 784 |
+
"learning_rate": 1.0536779324055668e-07,
|
| 785 |
+
"loss": 4.0959,
|
| 786 |
+
"step": 111
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.11023622047244094,
|
| 790 |
+
"grad_norm": 11.321606636047363,
|
| 791 |
+
"learning_rate": 1.0636182902584495e-07,
|
| 792 |
+
"loss": 4.2785,
|
| 793 |
+
"step": 112
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.11122047244094488,
|
| 797 |
+
"grad_norm": 14.717891693115234,
|
| 798 |
+
"learning_rate": 1.0735586481113321e-07,
|
| 799 |
+
"loss": 3.9945,
|
| 800 |
+
"step": 113
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.11220472440944881,
|
| 804 |
+
"grad_norm": 45.00100326538086,
|
| 805 |
+
"learning_rate": 1.0834990059642149e-07,
|
| 806 |
+
"loss": 10.0652,
|
| 807 |
+
"step": 114
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.11318897637795275,
|
| 811 |
+
"grad_norm": 12.017743110656738,
|
| 812 |
+
"learning_rate": 1.0934393638170976e-07,
|
| 813 |
+
"loss": 3.8621,
|
| 814 |
+
"step": 115
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.1141732283464567,
|
| 818 |
+
"grad_norm": 14.086198806762695,
|
| 819 |
+
"learning_rate": 1.1033797216699802e-07,
|
| 820 |
+
"loss": 4.3975,
|
| 821 |
+
"step": 116
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.11515748031496063,
|
| 825 |
+
"grad_norm": 43.2061767578125,
|
| 826 |
+
"learning_rate": 1.1133200795228631e-07,
|
| 827 |
+
"loss": 9.7899,
|
| 828 |
+
"step": 117
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.11614173228346457,
|
| 832 |
+
"grad_norm": 12.647043228149414,
|
| 833 |
+
"learning_rate": 1.1232604373757458e-07,
|
| 834 |
+
"loss": 4.3812,
|
| 835 |
+
"step": 118
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 0.1171259842519685,
|
| 839 |
+
"grad_norm": 11.732013702392578,
|
| 840 |
+
"learning_rate": 1.1332007952286284e-07,
|
| 841 |
+
"loss": 3.8715,
|
| 842 |
+
"step": 119
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 0.11811023622047244,
|
| 846 |
+
"grad_norm": 9.888449668884277,
|
| 847 |
+
"learning_rate": 1.1431411530815111e-07,
|
| 848 |
+
"loss": 3.8327,
|
| 849 |
+
"step": 120
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.11909448818897637,
|
| 853 |
+
"grad_norm": 9.061322212219238,
|
| 854 |
+
"learning_rate": 1.1530815109343939e-07,
|
| 855 |
+
"loss": 3.5103,
|
| 856 |
+
"step": 121
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.12007874015748031,
|
| 860 |
+
"grad_norm": 38.643943786621094,
|
| 861 |
+
"learning_rate": 1.1630218687872765e-07,
|
| 862 |
+
"loss": 9.3158,
|
| 863 |
+
"step": 122
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 0.12106299212598425,
|
| 867 |
+
"grad_norm": 11.240921974182129,
|
| 868 |
+
"learning_rate": 1.1729622266401592e-07,
|
| 869 |
+
"loss": 3.7201,
|
| 870 |
+
"step": 123
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.1220472440944882,
|
| 874 |
+
"grad_norm": 11.231223106384277,
|
| 875 |
+
"learning_rate": 1.182902584493042e-07,
|
| 876 |
+
"loss": 3.4311,
|
| 877 |
+
"step": 124
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 0.12303149606299213,
|
| 881 |
+
"grad_norm": 11.026339530944824,
|
| 882 |
+
"learning_rate": 1.1928429423459245e-07,
|
| 883 |
+
"loss": 3.7946,
|
| 884 |
+
"step": 125
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 0.12401574803149606,
|
| 888 |
+
"grad_norm": 11.620814323425293,
|
| 889 |
+
"learning_rate": 1.2027833001988073e-07,
|
| 890 |
+
"loss": 4.0456,
|
| 891 |
+
"step": 126
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.125,
|
| 895 |
+
"grad_norm": 9.652909278869629,
|
| 896 |
+
"learning_rate": 1.21272365805169e-07,
|
| 897 |
+
"loss": 3.482,
|
| 898 |
+
"step": 127
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 0.12598425196850394,
|
| 902 |
+
"grad_norm": 9.82579231262207,
|
| 903 |
+
"learning_rate": 1.222664015904573e-07,
|
| 904 |
+
"loss": 3.1901,
|
| 905 |
+
"step": 128
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 0.12696850393700787,
|
| 909 |
+
"grad_norm": 10.219281196594238,
|
| 910 |
+
"learning_rate": 1.2326043737574557e-07,
|
| 911 |
+
"loss": 3.414,
|
| 912 |
+
"step": 129
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 0.1279527559055118,
|
| 916 |
+
"grad_norm": 9.734150886535645,
|
| 917 |
+
"learning_rate": 1.2425447316103382e-07,
|
| 918 |
+
"loss": 3.4967,
|
| 919 |
+
"step": 130
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.12893700787401574,
|
| 923 |
+
"grad_norm": 10.505714416503906,
|
| 924 |
+
"learning_rate": 1.2524850894632207e-07,
|
| 925 |
+
"loss": 3.6594,
|
| 926 |
+
"step": 131
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 0.12992125984251968,
|
| 930 |
+
"grad_norm": 39.98779296875,
|
| 931 |
+
"learning_rate": 1.2624254473161035e-07,
|
| 932 |
+
"loss": 8.066,
|
| 933 |
+
"step": 132
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.1309055118110236,
|
| 937 |
+
"grad_norm": 9.36937427520752,
|
| 938 |
+
"learning_rate": 1.2723658051689863e-07,
|
| 939 |
+
"loss": 3.7872,
|
| 940 |
+
"step": 133
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.13188976377952755,
|
| 944 |
+
"grad_norm": 10.953369140625,
|
| 945 |
+
"learning_rate": 1.282306163021869e-07,
|
| 946 |
+
"loss": 4.0023,
|
| 947 |
+
"step": 134
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 0.1328740157480315,
|
| 951 |
+
"grad_norm": 11.828601837158203,
|
| 952 |
+
"learning_rate": 1.2922465208747519e-07,
|
| 953 |
+
"loss": 3.7728,
|
| 954 |
+
"step": 135
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.13385826771653545,
|
| 958 |
+
"grad_norm": 9.795777320861816,
|
| 959 |
+
"learning_rate": 1.3021868787276344e-07,
|
| 960 |
+
"loss": 3.1893,
|
| 961 |
+
"step": 136
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 0.13484251968503938,
|
| 965 |
+
"grad_norm": 10.846212387084961,
|
| 966 |
+
"learning_rate": 1.3121272365805172e-07,
|
| 967 |
+
"loss": 3.3635,
|
| 968 |
+
"step": 137
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 0.13582677165354332,
|
| 972 |
+
"grad_norm": 13.001614570617676,
|
| 973 |
+
"learning_rate": 1.3220675944333997e-07,
|
| 974 |
+
"loss": 4.0195,
|
| 975 |
+
"step": 138
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.13681102362204725,
|
| 979 |
+
"grad_norm": 11.749286651611328,
|
| 980 |
+
"learning_rate": 1.3320079522862825e-07,
|
| 981 |
+
"loss": 4.1097,
|
| 982 |
+
"step": 139
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.1377952755905512,
|
| 986 |
+
"grad_norm": 12.08881664276123,
|
| 987 |
+
"learning_rate": 1.3419483101391653e-07,
|
| 988 |
+
"loss": 3.7903,
|
| 989 |
+
"step": 140
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 0.13877952755905512,
|
| 993 |
+
"grad_norm": 10.898722648620605,
|
| 994 |
+
"learning_rate": 1.351888667992048e-07,
|
| 995 |
+
"loss": 3.5748,
|
| 996 |
+
"step": 141
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 0.13976377952755906,
|
| 1000 |
+
"grad_norm": 11.456235885620117,
|
| 1001 |
+
"learning_rate": 1.3618290258449306e-07,
|
| 1002 |
+
"loss": 3.8104,
|
| 1003 |
+
"step": 142
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 0.140748031496063,
|
| 1007 |
+
"grad_norm": 47.697425842285156,
|
| 1008 |
+
"learning_rate": 1.3717693836978134e-07,
|
| 1009 |
+
"loss": 8.0411,
|
| 1010 |
+
"step": 143
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.14173228346456693,
|
| 1014 |
+
"grad_norm": 10.220965385437012,
|
| 1015 |
+
"learning_rate": 1.381709741550696e-07,
|
| 1016 |
+
"loss": 3.4819,
|
| 1017 |
+
"step": 144
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.14271653543307086,
|
| 1021 |
+
"grad_norm": 13.412939071655273,
|
| 1022 |
+
"learning_rate": 1.3916500994035787e-07,
|
| 1023 |
+
"loss": 3.452,
|
| 1024 |
+
"step": 145
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 0.1437007874015748,
|
| 1028 |
+
"grad_norm": 11.866227149963379,
|
| 1029 |
+
"learning_rate": 1.4015904572564615e-07,
|
| 1030 |
+
"loss": 3.5861,
|
| 1031 |
+
"step": 146
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 0.14468503937007873,
|
| 1035 |
+
"grad_norm": 10.724785804748535,
|
| 1036 |
+
"learning_rate": 1.4115308151093443e-07,
|
| 1037 |
+
"loss": 3.4324,
|
| 1038 |
+
"step": 147
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 0.14566929133858267,
|
| 1042 |
+
"grad_norm": 11.023091316223145,
|
| 1043 |
+
"learning_rate": 1.421471172962227e-07,
|
| 1044 |
+
"loss": 3.521,
|
| 1045 |
+
"step": 148
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.1466535433070866,
|
| 1049 |
+
"grad_norm": 12.216788291931152,
|
| 1050 |
+
"learning_rate": 1.4314115308151096e-07,
|
| 1051 |
+
"loss": 3.8868,
|
| 1052 |
+
"step": 149
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 0.14763779527559054,
|
| 1056 |
+
"grad_norm": 71.6353530883789,
|
| 1057 |
+
"learning_rate": 1.4413518886679924e-07,
|
| 1058 |
+
"loss": 8.1191,
|
| 1059 |
+
"step": 150
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.1486220472440945,
|
| 1063 |
+
"grad_norm": 10.8847074508667,
|
| 1064 |
+
"learning_rate": 1.451292246520875e-07,
|
| 1065 |
+
"loss": 3.6447,
|
| 1066 |
+
"step": 151
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 0.14960629921259844,
|
| 1070 |
+
"grad_norm": 11.547443389892578,
|
| 1071 |
+
"learning_rate": 1.4612326043737577e-07,
|
| 1072 |
+
"loss": 2.9436,
|
| 1073 |
+
"step": 152
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 0.15059055118110237,
|
| 1077 |
+
"grad_norm": 42.24600601196289,
|
| 1078 |
+
"learning_rate": 1.4711729622266402e-07,
|
| 1079 |
+
"loss": 8.1535,
|
| 1080 |
+
"step": 153
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.15059055118110237,
|
| 1084 |
+
"eval_Qnli-dev_cosine_accuracy": 0.591796875,
|
| 1085 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9479926824569702,
|
| 1086 |
+
"eval_Qnli-dev_cosine_ap": 0.5658036772817674,
|
| 1087 |
+
"eval_Qnli-dev_cosine_f1": 0.6291834002677376,
|
| 1088 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7761930823326111,
|
| 1089 |
+
"eval_Qnli-dev_cosine_precision": 0.4598825831702544,
|
| 1090 |
+
"eval_Qnli-dev_cosine_recall": 0.9957627118644068,
|
| 1091 |
+
"eval_Qnli-dev_dot_accuracy": 0.59375,
|
| 1092 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 724.091064453125,
|
| 1093 |
+
"eval_Qnli-dev_dot_ap": 0.5657459555147606,
|
| 1094 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
| 1095 |
+
"eval_Qnli-dev_dot_f1_threshold": 596.2498779296875,
|
| 1096 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
| 1097 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
| 1098 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.591796875,
|
| 1099 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 8.938886642456055,
|
| 1100 |
+
"eval_Qnli-dev_euclidean_ap": 0.5658036772817674,
|
| 1101 |
+
"eval_Qnli-dev_euclidean_f1": 0.6291834002677376,
|
| 1102 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 18.542938232421875,
|
| 1103 |
+
"eval_Qnli-dev_euclidean_precision": 0.4598825831702544,
|
| 1104 |
+
"eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
|
| 1105 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.6171875,
|
| 1106 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 202.07958984375,
|
| 1107 |
+
"eval_Qnli-dev_manhattan_ap": 0.5891966424964378,
|
| 1108 |
+
"eval_Qnli-dev_manhattan_f1": 0.6291834002677376,
|
| 1109 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 307.9236145019531,
|
| 1110 |
+
"eval_Qnli-dev_manhattan_precision": 0.4598825831702544,
|
| 1111 |
+
"eval_Qnli-dev_manhattan_recall": 0.9957627118644068,
|
| 1112 |
+
"eval_Qnli-dev_max_accuracy": 0.6171875,
|
| 1113 |
+
"eval_Qnli-dev_max_accuracy_threshold": 724.091064453125,
|
| 1114 |
+
"eval_Qnli-dev_max_ap": 0.5891966424964378,
|
| 1115 |
+
"eval_Qnli-dev_max_f1": 0.6291834002677376,
|
| 1116 |
+
"eval_Qnli-dev_max_f1_threshold": 596.2498779296875,
|
| 1117 |
+
"eval_Qnli-dev_max_precision": 0.4598825831702544,
|
| 1118 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
| 1119 |
+
"eval_allNLI-dev_cosine_accuracy": 0.666015625,
|
| 1120 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9797871112823486,
|
| 1121 |
+
"eval_allNLI-dev_cosine_ap": 0.4008449937025217,
|
| 1122 |
+
"eval_allNLI-dev_cosine_f1": 0.504258943781942,
|
| 1123 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8929213285446167,
|
| 1124 |
+
"eval_allNLI-dev_cosine_precision": 0.357487922705314,
|
| 1125 |
+
"eval_allNLI-dev_cosine_recall": 0.8554913294797688,
|
| 1126 |
+
"eval_allNLI-dev_dot_accuracy": 0.666015625,
|
| 1127 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 752.6634521484375,
|
| 1128 |
+
"eval_allNLI-dev_dot_ap": 0.40071344979441287,
|
| 1129 |
+
"eval_allNLI-dev_dot_f1": 0.504258943781942,
|
| 1130 |
+
"eval_allNLI-dev_dot_f1_threshold": 685.9220581054688,
|
| 1131 |
+
"eval_allNLI-dev_dot_precision": 0.357487922705314,
|
| 1132 |
+
"eval_allNLI-dev_dot_recall": 0.8554913294797688,
|
| 1133 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.666015625,
|
| 1134 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 5.572628974914551,
|
| 1135 |
+
"eval_allNLI-dev_euclidean_ap": 0.40083962142052487,
|
| 1136 |
+
"eval_allNLI-dev_euclidean_f1": 0.504258943781942,
|
| 1137 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 12.826179504394531,
|
| 1138 |
+
"eval_allNLI-dev_euclidean_precision": 0.357487922705314,
|
| 1139 |
+
"eval_allNLI-dev_euclidean_recall": 0.8554913294797688,
|
| 1140 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.66796875,
|
| 1141 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 144.52613830566406,
|
| 1142 |
+
"eval_allNLI-dev_manhattan_ap": 0.4008700157620745,
|
| 1143 |
+
"eval_allNLI-dev_manhattan_f1": 0.5075987841945289,
|
| 1144 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 267.046875,
|
| 1145 |
+
"eval_allNLI-dev_manhattan_precision": 0.3443298969072165,
|
| 1146 |
+
"eval_allNLI-dev_manhattan_recall": 0.9653179190751445,
|
| 1147 |
+
"eval_allNLI-dev_max_accuracy": 0.66796875,
|
| 1148 |
+
"eval_allNLI-dev_max_accuracy_threshold": 752.6634521484375,
|
| 1149 |
+
"eval_allNLI-dev_max_ap": 0.4008700157620745,
|
| 1150 |
+
"eval_allNLI-dev_max_f1": 0.5075987841945289,
|
| 1151 |
+
"eval_allNLI-dev_max_f1_threshold": 685.9220581054688,
|
| 1152 |
+
"eval_allNLI-dev_max_precision": 0.357487922705314,
|
| 1153 |
+
"eval_allNLI-dev_max_recall": 0.9653179190751445,
|
| 1154 |
+
"eval_loss": 2.203232526779175,
|
| 1155 |
+
"eval_runtime": 50.3824,
|
| 1156 |
+
"eval_samples_per_second": 33.027,
|
| 1157 |
+
"eval_sequential_score": 0.5891966424964378,
|
| 1158 |
+
"eval_steps_per_second": 0.139,
|
| 1159 |
+
"eval_sts-test_pearson_cosine": 0.1561600438268545,
|
| 1160 |
+
"eval_sts-test_pearson_dot": 0.15588248423807516,
|
| 1161 |
+
"eval_sts-test_pearson_euclidean": 0.1908690981304929,
|
| 1162 |
+
"eval_sts-test_pearson_manhattan": 0.2216924674035587,
|
| 1163 |
+
"eval_sts-test_pearson_max": 0.2216924674035587,
|
| 1164 |
+
"eval_sts-test_spearman_cosine": 0.22356441354815124,
|
| 1165 |
+
"eval_sts-test_spearman_dot": 0.22337189362164545,
|
| 1166 |
+
"eval_sts-test_spearman_euclidean": 0.22363767136304896,
|
| 1167 |
+
"eval_sts-test_spearman_manhattan": 0.24997065610359018,
|
| 1168 |
+
"eval_sts-test_spearman_max": 0.24997065610359018,
|
| 1169 |
+
"step": 153
|
| 1170 |
+
},
|
| 1171 |
+
{
|
| 1172 |
+
"epoch": 0.1515748031496063,
|
| 1173 |
+
"grad_norm": 13.303340911865234,
|
| 1174 |
+
"learning_rate": 1.4811133200795232e-07,
|
| 1175 |
+
"loss": 3.9619,
|
| 1176 |
+
"step": 154
|
| 1177 |
+
},
|
| 1178 |
+
{
|
| 1179 |
+
"epoch": 0.15255905511811024,
|
| 1180 |
+
"grad_norm": 10.895444869995117,
|
| 1181 |
+
"learning_rate": 1.4910536779324058e-07,
|
| 1182 |
+
"loss": 3.1301,
|
| 1183 |
+
"step": 155
|
| 1184 |
+
},
|
| 1185 |
+
{
|
| 1186 |
+
"epoch": 0.15354330708661418,
|
| 1187 |
+
"grad_norm": 9.847289085388184,
|
| 1188 |
+
"learning_rate": 1.5009940357852886e-07,
|
| 1189 |
+
"loss": 3.0478,
|
| 1190 |
+
"step": 156
|
| 1191 |
+
},
|
| 1192 |
+
{
|
| 1193 |
+
"epoch": 0.1545275590551181,
|
| 1194 |
+
"grad_norm": 9.858047485351562,
|
| 1195 |
+
"learning_rate": 1.510934393638171e-07,
|
| 1196 |
+
"loss": 3.2986,
|
| 1197 |
+
"step": 157
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"epoch": 0.15551181102362205,
|
| 1201 |
+
"grad_norm": 11.554423332214355,
|
| 1202 |
+
"learning_rate": 1.5208747514910539e-07,
|
| 1203 |
+
"loss": 3.2847,
|
| 1204 |
+
"step": 158
|
| 1205 |
+
},
|
| 1206 |
+
{
|
| 1207 |
+
"epoch": 0.15649606299212598,
|
| 1208 |
+
"grad_norm": 11.145759582519531,
|
| 1209 |
+
"learning_rate": 1.5308151093439367e-07,
|
| 1210 |
+
"loss": 3.6599,
|
| 1211 |
+
"step": 159
|
| 1212 |
+
},
|
| 1213 |
+
{
|
| 1214 |
+
"epoch": 0.15748031496062992,
|
| 1215 |
+
"grad_norm": 9.598219871520996,
|
| 1216 |
+
"learning_rate": 1.5407554671968192e-07,
|
| 1217 |
+
"loss": 3.2238,
|
| 1218 |
+
"step": 160
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"epoch": 0.15846456692913385,
|
| 1222 |
+
"grad_norm": 11.533960342407227,
|
| 1223 |
+
"learning_rate": 1.5506958250497022e-07,
|
| 1224 |
+
"loss": 2.8897,
|
| 1225 |
+
"step": 161
|
| 1226 |
+
},
|
| 1227 |
+
{
|
| 1228 |
+
"epoch": 0.1594488188976378,
|
| 1229 |
+
"grad_norm": 12.17159652709961,
|
| 1230 |
+
"learning_rate": 1.5606361829025848e-07,
|
| 1231 |
+
"loss": 3.9443,
|
| 1232 |
+
"step": 162
|
| 1233 |
+
},
|
| 1234 |
+
{
|
| 1235 |
+
"epoch": 0.16043307086614172,
|
| 1236 |
+
"grad_norm": 10.684307098388672,
|
| 1237 |
+
"learning_rate": 1.5705765407554675e-07,
|
| 1238 |
+
"loss": 3.3733,
|
| 1239 |
+
"step": 163
|
| 1240 |
+
},
|
| 1241 |
+
{
|
| 1242 |
+
"epoch": 0.16141732283464566,
|
| 1243 |
+
"grad_norm": 12.093358039855957,
|
| 1244 |
+
"learning_rate": 1.58051689860835e-07,
|
| 1245 |
+
"loss": 3.7444,
|
| 1246 |
+
"step": 164
|
| 1247 |
+
},
|
| 1248 |
+
{
|
| 1249 |
+
"epoch": 0.1624015748031496,
|
| 1250 |
+
"grad_norm": 12.204547882080078,
|
| 1251 |
+
"learning_rate": 1.5904572564612329e-07,
|
| 1252 |
+
"loss": 3.4813,
|
| 1253 |
+
"step": 165
|
| 1254 |
+
},
|
| 1255 |
+
{
|
| 1256 |
+
"epoch": 0.16338582677165353,
|
| 1257 |
+
"grad_norm": 11.32477855682373,
|
| 1258 |
+
"learning_rate": 1.6003976143141154e-07,
|
| 1259 |
+
"loss": 2.6865,
|
| 1260 |
+
"step": 166
|
| 1261 |
+
},
|
| 1262 |
+
{
|
| 1263 |
+
"epoch": 0.1643700787401575,
|
| 1264 |
+
"grad_norm": 10.9214506149292,
|
| 1265 |
+
"learning_rate": 1.6103379721669984e-07,
|
| 1266 |
+
"loss": 2.7587,
|
| 1267 |
+
"step": 167
|
| 1268 |
+
},
|
| 1269 |
+
{
|
| 1270 |
+
"epoch": 0.16535433070866143,
|
| 1271 |
+
"grad_norm": 10.949960708618164,
|
| 1272 |
+
"learning_rate": 1.620278330019881e-07,
|
| 1273 |
+
"loss": 3.3628,
|
| 1274 |
+
"step": 168
|
| 1275 |
+
},
|
| 1276 |
+
{
|
| 1277 |
+
"epoch": 0.16633858267716536,
|
| 1278 |
+
"grad_norm": 12.229423522949219,
|
| 1279 |
+
"learning_rate": 1.6302186878727637e-07,
|
| 1280 |
+
"loss": 3.0035,
|
| 1281 |
+
"step": 169
|
| 1282 |
+
},
|
| 1283 |
+
{
|
| 1284 |
+
"epoch": 0.1673228346456693,
|
| 1285 |
+
"grad_norm": 77.52136993408203,
|
| 1286 |
+
"learning_rate": 1.6401590457256465e-07,
|
| 1287 |
+
"loss": 10.1591,
|
| 1288 |
+
"step": 170
|
| 1289 |
+
},
|
| 1290 |
+
{
|
| 1291 |
+
"epoch": 0.16830708661417323,
|
| 1292 |
+
"grad_norm": 13.680435180664062,
|
| 1293 |
+
"learning_rate": 1.650099403578529e-07,
|
| 1294 |
+
"loss": 3.5366,
|
| 1295 |
+
"step": 171
|
| 1296 |
+
},
|
| 1297 |
+
{
|
| 1298 |
+
"epoch": 0.16929133858267717,
|
| 1299 |
+
"grad_norm": 51.19025421142578,
|
| 1300 |
+
"learning_rate": 1.6600397614314118e-07,
|
| 1301 |
+
"loss": 8.4047,
|
| 1302 |
+
"step": 172
|
| 1303 |
+
},
|
| 1304 |
+
{
|
| 1305 |
+
"epoch": 0.1702755905511811,
|
| 1306 |
+
"grad_norm": 12.889047622680664,
|
| 1307 |
+
"learning_rate": 1.6699801192842944e-07,
|
| 1308 |
+
"loss": 3.8643,
|
| 1309 |
+
"step": 173
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
"epoch": 0.17125984251968504,
|
| 1313 |
+
"grad_norm": 12.575840950012207,
|
| 1314 |
+
"learning_rate": 1.6799204771371774e-07,
|
| 1315 |
+
"loss": 3.3529,
|
| 1316 |
+
"step": 174
|
| 1317 |
+
},
|
| 1318 |
+
{
|
| 1319 |
+
"epoch": 0.17224409448818898,
|
| 1320 |
+
"grad_norm": 11.404970169067383,
|
| 1321 |
+
"learning_rate": 1.68986083499006e-07,
|
| 1322 |
+
"loss": 3.7143,
|
| 1323 |
+
"step": 175
|
| 1324 |
+
},
|
| 1325 |
+
{
|
| 1326 |
+
"epoch": 0.1732283464566929,
|
| 1327 |
+
"grad_norm": 11.78778076171875,
|
| 1328 |
+
"learning_rate": 1.6998011928429427e-07,
|
| 1329 |
+
"loss": 3.3323,
|
| 1330 |
+
"step": 176
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"epoch": 0.17421259842519685,
|
| 1334 |
+
"grad_norm": 11.07532787322998,
|
| 1335 |
+
"learning_rate": 1.7097415506958253e-07,
|
| 1336 |
+
"loss": 3.1206,
|
| 1337 |
+
"step": 177
|
| 1338 |
+
},
|
| 1339 |
+
{
|
| 1340 |
+
"epoch": 0.17519685039370078,
|
| 1341 |
+
"grad_norm": 13.040700912475586,
|
| 1342 |
+
"learning_rate": 1.719681908548708e-07,
|
| 1343 |
+
"loss": 3.1348,
|
| 1344 |
+
"step": 178
|
| 1345 |
+
},
|
| 1346 |
+
{
|
| 1347 |
+
"epoch": 0.17618110236220472,
|
| 1348 |
+
"grad_norm": 49.289466857910156,
|
| 1349 |
+
"learning_rate": 1.7296222664015906e-07,
|
| 1350 |
+
"loss": 7.6011,
|
| 1351 |
+
"step": 179
|
| 1352 |
+
},
|
| 1353 |
+
{
|
| 1354 |
+
"epoch": 0.17716535433070865,
|
| 1355 |
+
"grad_norm": 14.549922943115234,
|
| 1356 |
+
"learning_rate": 1.7395626242544734e-07,
|
| 1357 |
+
"loss": 3.7025,
|
| 1358 |
+
"step": 180
|
| 1359 |
+
},
|
| 1360 |
+
{
|
| 1361 |
+
"epoch": 0.1781496062992126,
|
| 1362 |
+
"grad_norm": 104.96332550048828,
|
| 1363 |
+
"learning_rate": 1.7495029821073564e-07,
|
| 1364 |
+
"loss": 10.5662,
|
| 1365 |
+
"step": 181
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"epoch": 0.17913385826771652,
|
| 1369 |
+
"grad_norm": 61.00530242919922,
|
| 1370 |
+
"learning_rate": 1.759443339960239e-07,
|
| 1371 |
+
"loss": 8.966,
|
| 1372 |
+
"step": 182
|
| 1373 |
+
},
|
| 1374 |
+
{
|
| 1375 |
+
"epoch": 0.18011811023622049,
|
| 1376 |
+
"grad_norm": 68.94571685791016,
|
| 1377 |
+
"learning_rate": 1.7693836978131217e-07,
|
| 1378 |
+
"loss": 9.426,
|
| 1379 |
+
"step": 183
|
| 1380 |
+
},
|
| 1381 |
+
{
|
| 1382 |
+
"epoch": 0.18110236220472442,
|
| 1383 |
+
"grad_norm": 11.119109153747559,
|
| 1384 |
+
"learning_rate": 1.7793240556660042e-07,
|
| 1385 |
+
"loss": 3.0025,
|
| 1386 |
+
"step": 184
|
| 1387 |
+
},
|
| 1388 |
+
{
|
| 1389 |
+
"epoch": 0.18208661417322836,
|
| 1390 |
+
"grad_norm": 34.247840881347656,
|
| 1391 |
+
"learning_rate": 1.789264413518887e-07,
|
| 1392 |
+
"loss": 7.0984,
|
| 1393 |
+
"step": 185
|
| 1394 |
+
},
|
| 1395 |
+
{
|
| 1396 |
+
"epoch": 0.1830708661417323,
|
| 1397 |
+
"grad_norm": 47.956634521484375,
|
| 1398 |
+
"learning_rate": 1.7992047713717695e-07,
|
| 1399 |
+
"loss": 7.3808,
|
| 1400 |
+
"step": 186
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"epoch": 0.18405511811023623,
|
| 1404 |
+
"grad_norm": 11.798696517944336,
|
| 1405 |
+
"learning_rate": 1.8091451292246523e-07,
|
| 1406 |
+
"loss": 2.8657,
|
| 1407 |
+
"step": 187
|
| 1408 |
+
},
|
| 1409 |
+
{
|
| 1410 |
+
"epoch": 0.18503937007874016,
|
| 1411 |
+
"grad_norm": 38.751102447509766,
|
| 1412 |
+
"learning_rate": 1.819085487077535e-07,
|
| 1413 |
+
"loss": 6.5636,
|
| 1414 |
+
"step": 188
|
| 1415 |
+
},
|
| 1416 |
+
{
|
| 1417 |
+
"epoch": 0.1860236220472441,
|
| 1418 |
+
"grad_norm": 14.265003204345703,
|
| 1419 |
+
"learning_rate": 1.829025844930418e-07,
|
| 1420 |
+
"loss": 3.4702,
|
| 1421 |
+
"step": 189
|
| 1422 |
+
},
|
| 1423 |
+
{
|
| 1424 |
+
"epoch": 0.18700787401574803,
|
| 1425 |
+
"grad_norm": 35.365360260009766,
|
| 1426 |
+
"learning_rate": 1.8389662027833004e-07,
|
| 1427 |
+
"loss": 5.9302,
|
| 1428 |
+
"step": 190
|
| 1429 |
+
},
|
| 1430 |
+
{
|
| 1431 |
+
"epoch": 0.18799212598425197,
|
| 1432 |
+
"grad_norm": 10.978341102600098,
|
| 1433 |
+
"learning_rate": 1.8489065606361832e-07,
|
| 1434 |
+
"loss": 3.2406,
|
| 1435 |
+
"step": 191
|
| 1436 |
+
},
|
| 1437 |
+
{
|
| 1438 |
+
"epoch": 0.1889763779527559,
|
| 1439 |
+
"grad_norm": 12.03227710723877,
|
| 1440 |
+
"learning_rate": 1.8588469184890657e-07,
|
| 1441 |
+
"loss": 3.4459,
|
| 1442 |
+
"step": 192
|
| 1443 |
+
},
|
| 1444 |
+
{
|
| 1445 |
+
"epoch": 0.18996062992125984,
|
| 1446 |
+
"grad_norm": 21.640823364257812,
|
| 1447 |
+
"learning_rate": 1.8687872763419485e-07,
|
| 1448 |
+
"loss": 5.269,
|
| 1449 |
+
"step": 193
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"epoch": 0.19094488188976377,
|
| 1453 |
+
"grad_norm": 21.88094139099121,
|
| 1454 |
+
"learning_rate": 1.8787276341948313e-07,
|
| 1455 |
+
"loss": 4.8605,
|
| 1456 |
+
"step": 194
|
| 1457 |
+
},
|
| 1458 |
+
{
|
| 1459 |
+
"epoch": 0.1919291338582677,
|
| 1460 |
+
"grad_norm": 10.063691139221191,
|
| 1461 |
+
"learning_rate": 1.888667992047714e-07,
|
| 1462 |
+
"loss": 2.9891,
|
| 1463 |
+
"step": 195
|
| 1464 |
+
},
|
| 1465 |
+
{
|
| 1466 |
+
"epoch": 0.19291338582677164,
|
| 1467 |
+
"grad_norm": 10.375823974609375,
|
| 1468 |
+
"learning_rate": 1.898608349900597e-07,
|
| 1469 |
+
"loss": 3.6681,
|
| 1470 |
+
"step": 196
|
| 1471 |
+
},
|
| 1472 |
+
{
|
| 1473 |
+
"epoch": 0.19389763779527558,
|
| 1474 |
+
"grad_norm": 10.918342590332031,
|
| 1475 |
+
"learning_rate": 1.9085487077534794e-07,
|
| 1476 |
+
"loss": 3.1589,
|
| 1477 |
+
"step": 197
|
| 1478 |
+
},
|
| 1479 |
+
{
|
| 1480 |
+
"epoch": 0.19488188976377951,
|
| 1481 |
+
"grad_norm": 12.367669105529785,
|
| 1482 |
+
"learning_rate": 1.9184890656063622e-07,
|
| 1483 |
+
"loss": 3.1835,
|
| 1484 |
+
"step": 198
|
| 1485 |
+
},
|
| 1486 |
+
{
|
| 1487 |
+
"epoch": 0.19586614173228348,
|
| 1488 |
+
"grad_norm": 12.073822021484375,
|
| 1489 |
+
"learning_rate": 1.9284294234592447e-07,
|
| 1490 |
+
"loss": 3.7561,
|
| 1491 |
+
"step": 199
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"epoch": 0.1968503937007874,
|
| 1495 |
+
"grad_norm": 12.768759727478027,
|
| 1496 |
+
"learning_rate": 1.9383697813121275e-07,
|
| 1497 |
+
"loss": 4.0891,
|
| 1498 |
+
"step": 200
|
| 1499 |
+
},
|
| 1500 |
+
{
|
| 1501 |
+
"epoch": 0.19783464566929135,
|
| 1502 |
+
"grad_norm": 12.075078964233398,
|
| 1503 |
+
"learning_rate": 1.94831013916501e-07,
|
| 1504 |
+
"loss": 3.563,
|
| 1505 |
+
"step": 201
|
| 1506 |
+
},
|
| 1507 |
+
{
|
| 1508 |
+
"epoch": 0.19881889763779528,
|
| 1509 |
+
"grad_norm": 13.486553192138672,
|
| 1510 |
+
"learning_rate": 1.958250497017893e-07,
|
| 1511 |
+
"loss": 3.7433,
|
| 1512 |
+
"step": 202
|
| 1513 |
+
},
|
| 1514 |
+
{
|
| 1515 |
+
"epoch": 0.19980314960629922,
|
| 1516 |
+
"grad_norm": 12.1553955078125,
|
| 1517 |
+
"learning_rate": 1.9681908548707756e-07,
|
| 1518 |
+
"loss": 3.3813,
|
| 1519 |
+
"step": 203
|
| 1520 |
+
},
|
| 1521 |
+
{
|
| 1522 |
+
"epoch": 0.20078740157480315,
|
| 1523 |
+
"grad_norm": 23.534427642822266,
|
| 1524 |
+
"learning_rate": 1.9781312127236584e-07,
|
| 1525 |
+
"loss": 5.2311,
|
| 1526 |
+
"step": 204
|
| 1527 |
+
},
|
| 1528 |
+
{
|
| 1529 |
+
"epoch": 0.2017716535433071,
|
| 1530 |
+
"grad_norm": 11.403944969177246,
|
| 1531 |
+
"learning_rate": 1.9880715705765412e-07,
|
| 1532 |
+
"loss": 3.3494,
|
| 1533 |
+
"step": 205
|
| 1534 |
+
},
|
| 1535 |
+
{
|
| 1536 |
+
"epoch": 0.20275590551181102,
|
| 1537 |
+
"grad_norm": 10.039087295532227,
|
| 1538 |
+
"learning_rate": 1.9980119284294237e-07,
|
| 1539 |
+
"loss": 3.3533,
|
| 1540 |
+
"step": 206
|
| 1541 |
+
},
|
| 1542 |
+
{
|
| 1543 |
+
"epoch": 0.20374015748031496,
|
| 1544 |
+
"grad_norm": 11.510744094848633,
|
| 1545 |
+
"learning_rate": 2.0079522862823065e-07,
|
| 1546 |
+
"loss": 3.688,
|
| 1547 |
+
"step": 207
|
| 1548 |
+
},
|
| 1549 |
+
{
|
| 1550 |
+
"epoch": 0.2047244094488189,
|
| 1551 |
+
"grad_norm": 10.009934425354004,
|
| 1552 |
+
"learning_rate": 2.017892644135189e-07,
|
| 1553 |
+
"loss": 3.5342,
|
| 1554 |
+
"step": 208
|
| 1555 |
+
},
|
| 1556 |
+
{
|
| 1557 |
+
"epoch": 0.20570866141732283,
|
| 1558 |
+
"grad_norm": 21.598899841308594,
|
| 1559 |
+
"learning_rate": 2.027833001988072e-07,
|
| 1560 |
+
"loss": 4.9381,
|
| 1561 |
+
"step": 209
|
| 1562 |
+
},
|
| 1563 |
+
{
|
| 1564 |
+
"epoch": 0.20669291338582677,
|
| 1565 |
+
"grad_norm": 10.349525451660156,
|
| 1566 |
+
"learning_rate": 2.0377733598409546e-07,
|
| 1567 |
+
"loss": 3.1839,
|
| 1568 |
+
"step": 210
|
| 1569 |
+
},
|
| 1570 |
+
{
|
| 1571 |
+
"epoch": 0.2076771653543307,
|
| 1572 |
+
"grad_norm": 10.374922752380371,
|
| 1573 |
+
"learning_rate": 2.0477137176938374e-07,
|
| 1574 |
+
"loss": 3.0465,
|
| 1575 |
+
"step": 211
|
| 1576 |
+
},
|
| 1577 |
+
{
|
| 1578 |
+
"epoch": 0.20866141732283464,
|
| 1579 |
+
"grad_norm": 12.201885223388672,
|
| 1580 |
+
"learning_rate": 2.05765407554672e-07,
|
| 1581 |
+
"loss": 3.1232,
|
| 1582 |
+
"step": 212
|
| 1583 |
+
},
|
| 1584 |
+
{
|
| 1585 |
+
"epoch": 0.20964566929133857,
|
| 1586 |
+
"grad_norm": 21.732847213745117,
|
| 1587 |
+
"learning_rate": 2.0675944333996027e-07,
|
| 1588 |
+
"loss": 4.6297,
|
| 1589 |
+
"step": 213
|
| 1590 |
+
},
|
| 1591 |
+
{
|
| 1592 |
+
"epoch": 0.2106299212598425,
|
| 1593 |
+
"grad_norm": 9.907038688659668,
|
| 1594 |
+
"learning_rate": 2.0775347912524852e-07,
|
| 1595 |
+
"loss": 2.9834,
|
| 1596 |
+
"step": 214
|
| 1597 |
+
},
|
| 1598 |
+
{
|
| 1599 |
+
"epoch": 0.21161417322834647,
|
| 1600 |
+
"grad_norm": 17.139137268066406,
|
| 1601 |
+
"learning_rate": 2.087475149105368e-07,
|
| 1602 |
+
"loss": 4.2231,
|
| 1603 |
+
"step": 215
|
| 1604 |
+
},
|
| 1605 |
+
{
|
| 1606 |
+
"epoch": 0.2125984251968504,
|
| 1607 |
+
"grad_norm": 12.830426216125488,
|
| 1608 |
+
"learning_rate": 2.097415506958251e-07,
|
| 1609 |
+
"loss": 3.1458,
|
| 1610 |
+
"step": 216
|
| 1611 |
+
},
|
| 1612 |
+
{
|
| 1613 |
+
"epoch": 0.21358267716535434,
|
| 1614 |
+
"grad_norm": 10.250080108642578,
|
| 1615 |
+
"learning_rate": 2.1073558648111336e-07,
|
| 1616 |
+
"loss": 3.2525,
|
| 1617 |
+
"step": 217
|
| 1618 |
+
},
|
| 1619 |
+
{
|
| 1620 |
+
"epoch": 0.21456692913385828,
|
| 1621 |
+
"grad_norm": 11.067953109741211,
|
| 1622 |
+
"learning_rate": 2.1172962226640164e-07,
|
| 1623 |
+
"loss": 3.5971,
|
| 1624 |
+
"step": 218
|
| 1625 |
+
},
|
| 1626 |
+
{
|
| 1627 |
+
"epoch": 0.2155511811023622,
|
| 1628 |
+
"grad_norm": 10.0042724609375,
|
| 1629 |
+
"learning_rate": 2.127236580516899e-07,
|
| 1630 |
+
"loss": 3.5616,
|
| 1631 |
+
"step": 219
|
| 1632 |
+
},
|
| 1633 |
+
{
|
| 1634 |
+
"epoch": 0.21653543307086615,
|
| 1635 |
+
"grad_norm": 10.706488609313965,
|
| 1636 |
+
"learning_rate": 2.1371769383697817e-07,
|
| 1637 |
+
"loss": 3.2378,
|
| 1638 |
+
"step": 220
|
| 1639 |
+
},
|
| 1640 |
+
{
|
| 1641 |
+
"epoch": 0.21751968503937008,
|
| 1642 |
+
"grad_norm": 12.0921630859375,
|
| 1643 |
+
"learning_rate": 2.1471172962226642e-07,
|
| 1644 |
+
"loss": 2.9075,
|
| 1645 |
+
"step": 221
|
| 1646 |
+
},
|
| 1647 |
+
{
|
| 1648 |
+
"epoch": 0.21850393700787402,
|
| 1649 |
+
"grad_norm": 11.22988510131836,
|
| 1650 |
+
"learning_rate": 2.1570576540755473e-07,
|
| 1651 |
+
"loss": 3.0391,
|
| 1652 |
+
"step": 222
|
| 1653 |
+
},
|
| 1654 |
+
{
|
| 1655 |
+
"epoch": 0.21948818897637795,
|
| 1656 |
+
"grad_norm": 11.993961334228516,
|
| 1657 |
+
"learning_rate": 2.1669980119284298e-07,
|
| 1658 |
+
"loss": 3.5573,
|
| 1659 |
+
"step": 223
|
| 1660 |
+
},
|
| 1661 |
+
{
|
| 1662 |
+
"epoch": 0.2204724409448819,
|
| 1663 |
+
"grad_norm": 11.548995971679688,
|
| 1664 |
+
"learning_rate": 2.1769383697813126e-07,
|
| 1665 |
+
"loss": 3.2092,
|
| 1666 |
+
"step": 224
|
| 1667 |
+
},
|
| 1668 |
+
{
|
| 1669 |
+
"epoch": 0.22145669291338582,
|
| 1670 |
+
"grad_norm": 9.982552528381348,
|
| 1671 |
+
"learning_rate": 2.186878727634195e-07,
|
| 1672 |
+
"loss": 3.2646,
|
| 1673 |
+
"step": 225
|
| 1674 |
+
},
|
| 1675 |
+
{
|
| 1676 |
+
"epoch": 0.22244094488188976,
|
| 1677 |
+
"grad_norm": 9.191473007202148,
|
| 1678 |
+
"learning_rate": 2.196819085487078e-07,
|
| 1679 |
+
"loss": 3.0886,
|
| 1680 |
+
"step": 226
|
| 1681 |
+
},
|
| 1682 |
+
{
|
| 1683 |
+
"epoch": 0.2234251968503937,
|
| 1684 |
+
"grad_norm": 14.892210006713867,
|
| 1685 |
+
"learning_rate": 2.2067594433399604e-07,
|
| 1686 |
+
"loss": 3.5241,
|
| 1687 |
+
"step": 227
|
| 1688 |
+
},
|
| 1689 |
+
{
|
| 1690 |
+
"epoch": 0.22440944881889763,
|
| 1691 |
+
"grad_norm": 12.9964599609375,
|
| 1692 |
+
"learning_rate": 2.2166998011928432e-07,
|
| 1693 |
+
"loss": 3.0111,
|
| 1694 |
+
"step": 228
|
| 1695 |
+
},
|
| 1696 |
+
{
|
| 1697 |
+
"epoch": 0.22539370078740156,
|
| 1698 |
+
"grad_norm": 14.988781929016113,
|
| 1699 |
+
"learning_rate": 2.2266401590457263e-07,
|
| 1700 |
+
"loss": 3.707,
|
| 1701 |
+
"step": 229
|
| 1702 |
+
},
|
| 1703 |
+
{
|
| 1704 |
+
"epoch": 0.2263779527559055,
|
| 1705 |
+
"grad_norm": 35.95463180541992,
|
| 1706 |
+
"learning_rate": 2.2365805168986088e-07,
|
| 1707 |
+
"loss": 5.3822,
|
| 1708 |
+
"step": 230
|
| 1709 |
+
},
|
| 1710 |
+
{
|
| 1711 |
+
"epoch": 0.22736220472440946,
|
| 1712 |
+
"grad_norm": 14.787928581237793,
|
| 1713 |
+
"learning_rate": 2.2465208747514916e-07,
|
| 1714 |
+
"loss": 3.2646,
|
| 1715 |
+
"step": 231
|
| 1716 |
+
},
|
| 1717 |
+
{
|
| 1718 |
+
"epoch": 0.2283464566929134,
|
| 1719 |
+
"grad_norm": 10.399752616882324,
|
| 1720 |
+
"learning_rate": 2.256461232604374e-07,
|
| 1721 |
+
"loss": 2.7021,
|
| 1722 |
+
"step": 232
|
| 1723 |
+
},
|
| 1724 |
+
{
|
| 1725 |
+
"epoch": 0.22933070866141733,
|
| 1726 |
+
"grad_norm": 12.82553482055664,
|
| 1727 |
+
"learning_rate": 2.266401590457257e-07,
|
| 1728 |
+
"loss": 3.5131,
|
| 1729 |
+
"step": 233
|
| 1730 |
+
},
|
| 1731 |
+
{
|
| 1732 |
+
"epoch": 0.23031496062992127,
|
| 1733 |
+
"grad_norm": 13.701425552368164,
|
| 1734 |
+
"learning_rate": 2.2763419483101394e-07,
|
| 1735 |
+
"loss": 3.103,
|
| 1736 |
+
"step": 234
|
| 1737 |
+
},
|
| 1738 |
+
{
|
| 1739 |
+
"epoch": 0.2312992125984252,
|
| 1740 |
+
"grad_norm": 11.487199783325195,
|
| 1741 |
+
"learning_rate": 2.2862823061630222e-07,
|
| 1742 |
+
"loss": 2.9535,
|
| 1743 |
+
"step": 235
|
| 1744 |
+
},
|
| 1745 |
+
{
|
| 1746 |
+
"epoch": 0.23228346456692914,
|
| 1747 |
+
"grad_norm": 11.957090377807617,
|
| 1748 |
+
"learning_rate": 2.296222664015905e-07,
|
| 1749 |
+
"loss": 2.9631,
|
| 1750 |
+
"step": 236
|
| 1751 |
+
},
|
| 1752 |
+
{
|
| 1753 |
+
"epoch": 0.23326771653543307,
|
| 1754 |
+
"grad_norm": 11.277992248535156,
|
| 1755 |
+
"learning_rate": 2.3061630218687878e-07,
|
| 1756 |
+
"loss": 2.8068,
|
| 1757 |
+
"step": 237
|
| 1758 |
+
},
|
| 1759 |
+
{
|
| 1760 |
+
"epoch": 0.234251968503937,
|
| 1761 |
+
"grad_norm": 14.584067344665527,
|
| 1762 |
+
"learning_rate": 2.3161033797216703e-07,
|
| 1763 |
+
"loss": 3.4251,
|
| 1764 |
+
"step": 238
|
| 1765 |
+
},
|
| 1766 |
+
{
|
| 1767 |
+
"epoch": 0.23523622047244094,
|
| 1768 |
+
"grad_norm": 12.476365089416504,
|
| 1769 |
+
"learning_rate": 2.326043737574553e-07,
|
| 1770 |
+
"loss": 2.8495,
|
| 1771 |
+
"step": 239
|
| 1772 |
+
},
|
| 1773 |
+
{
|
| 1774 |
+
"epoch": 0.23622047244094488,
|
| 1775 |
+
"grad_norm": 10.975320816040039,
|
| 1776 |
+
"learning_rate": 2.335984095427436e-07,
|
| 1777 |
+
"loss": 2.9972,
|
| 1778 |
+
"step": 240
|
| 1779 |
+
},
|
| 1780 |
+
{
|
| 1781 |
+
"epoch": 0.2372047244094488,
|
| 1782 |
+
"grad_norm": 15.740063667297363,
|
| 1783 |
+
"learning_rate": 2.3459244532803184e-07,
|
| 1784 |
+
"loss": 3.3509,
|
| 1785 |
+
"step": 241
|
| 1786 |
+
},
|
| 1787 |
+
{
|
| 1788 |
+
"epoch": 0.23818897637795275,
|
| 1789 |
+
"grad_norm": 11.939135551452637,
|
| 1790 |
+
"learning_rate": 2.3558648111332012e-07,
|
| 1791 |
+
"loss": 2.9234,
|
| 1792 |
+
"step": 242
|
| 1793 |
+
},
|
| 1794 |
+
{
|
| 1795 |
+
"epoch": 0.23917322834645668,
|
| 1796 |
+
"grad_norm": 11.509920120239258,
|
| 1797 |
+
"learning_rate": 2.365805168986084e-07,
|
| 1798 |
+
"loss": 2.4086,
|
| 1799 |
+
"step": 243
|
| 1800 |
+
},
|
| 1801 |
+
{
|
| 1802 |
+
"epoch": 0.24015748031496062,
|
| 1803 |
+
"grad_norm": 12.131606101989746,
|
| 1804 |
+
"learning_rate": 2.3757455268389668e-07,
|
| 1805 |
+
"loss": 3.1282,
|
| 1806 |
+
"step": 244
|
| 1807 |
+
},
|
| 1808 |
+
{
|
| 1809 |
+
"epoch": 0.24114173228346455,
|
| 1810 |
+
"grad_norm": 10.977266311645508,
|
| 1811 |
+
"learning_rate": 2.385685884691849e-07,
|
| 1812 |
+
"loss": 2.3352,
|
| 1813 |
+
"step": 245
|
| 1814 |
+
},
|
| 1815 |
+
{
|
| 1816 |
+
"epoch": 0.2421259842519685,
|
| 1817 |
+
"grad_norm": 13.836033821105957,
|
| 1818 |
+
"learning_rate": 2.395626242544732e-07,
|
| 1819 |
+
"loss": 2.4706,
|
| 1820 |
+
"step": 246
|
| 1821 |
+
},
|
| 1822 |
+
{
|
| 1823 |
+
"epoch": 0.24311023622047245,
|
| 1824 |
+
"grad_norm": 14.244443893432617,
|
| 1825 |
+
"learning_rate": 2.4055666003976146e-07,
|
| 1826 |
+
"loss": 3.5449,
|
| 1827 |
+
"step": 247
|
| 1828 |
+
},
|
| 1829 |
+
{
|
| 1830 |
+
"epoch": 0.2440944881889764,
|
| 1831 |
+
"grad_norm": 13.271723747253418,
|
| 1832 |
+
"learning_rate": 2.4155069582504976e-07,
|
| 1833 |
+
"loss": 2.8963,
|
| 1834 |
+
"step": 248
|
| 1835 |
+
},
|
| 1836 |
+
{
|
| 1837 |
+
"epoch": 0.24507874015748032,
|
| 1838 |
+
"grad_norm": 11.74501895904541,
|
| 1839 |
+
"learning_rate": 2.42544731610338e-07,
|
| 1840 |
+
"loss": 2.773,
|
| 1841 |
+
"step": 249
|
| 1842 |
+
},
|
| 1843 |
+
{
|
| 1844 |
+
"epoch": 0.24606299212598426,
|
| 1845 |
+
"grad_norm": 11.362481117248535,
|
| 1846 |
+
"learning_rate": 2.4353876739562627e-07,
|
| 1847 |
+
"loss": 2.355,
|
| 1848 |
+
"step": 250
|
| 1849 |
+
},
|
| 1850 |
+
{
|
| 1851 |
+
"epoch": 0.2470472440944882,
|
| 1852 |
+
"grad_norm": 14.688889503479004,
|
| 1853 |
+
"learning_rate": 2.445328031809146e-07,
|
| 1854 |
+
"loss": 2.656,
|
| 1855 |
+
"step": 251
|
| 1856 |
+
},
|
| 1857 |
+
{
|
| 1858 |
+
"epoch": 0.24803149606299213,
|
| 1859 |
+
"grad_norm": 10.654073715209961,
|
| 1860 |
+
"learning_rate": 2.4552683896620283e-07,
|
| 1861 |
+
"loss": 2.6221,
|
| 1862 |
+
"step": 252
|
| 1863 |
+
},
|
| 1864 |
+
{
|
| 1865 |
+
"epoch": 0.24901574803149606,
|
| 1866 |
+
"grad_norm": 54.549888610839844,
|
| 1867 |
+
"learning_rate": 2.4652087475149113e-07,
|
| 1868 |
+
"loss": 8.6739,
|
| 1869 |
+
"step": 253
|
| 1870 |
+
},
|
| 1871 |
+
{
|
| 1872 |
+
"epoch": 0.25,
|
| 1873 |
+
"grad_norm": 96.43404388427734,
|
| 1874 |
+
"learning_rate": 2.475149105367794e-07,
|
| 1875 |
+
"loss": 10.8242,
|
| 1876 |
+
"step": 254
|
| 1877 |
+
},
|
| 1878 |
+
{
|
| 1879 |
+
"epoch": 0.25098425196850394,
|
| 1880 |
+
"grad_norm": 12.798384666442871,
|
| 1881 |
+
"learning_rate": 2.4850894632206764e-07,
|
| 1882 |
+
"loss": 2.3408,
|
| 1883 |
+
"step": 255
|
| 1884 |
+
},
|
| 1885 |
+
{
|
| 1886 |
+
"epoch": 0.25196850393700787,
|
| 1887 |
+
"grad_norm": 11.494848251342773,
|
| 1888 |
+
"learning_rate": 2.495029821073559e-07,
|
| 1889 |
+
"loss": 2.1221,
|
| 1890 |
+
"step": 256
|
| 1891 |
+
},
|
| 1892 |
+
{
|
| 1893 |
+
"epoch": 0.2529527559055118,
|
| 1894 |
+
"grad_norm": 18.67085075378418,
|
| 1895 |
+
"learning_rate": 2.5049701789264414e-07,
|
| 1896 |
+
"loss": 3.295,
|
| 1897 |
+
"step": 257
|
| 1898 |
+
},
|
| 1899 |
+
{
|
| 1900 |
+
"epoch": 0.25393700787401574,
|
| 1901 |
+
"grad_norm": 12.794750213623047,
|
| 1902 |
+
"learning_rate": 2.5149105367793245e-07,
|
| 1903 |
+
"loss": 2.5896,
|
| 1904 |
+
"step": 258
|
| 1905 |
+
},
|
| 1906 |
+
{
|
| 1907 |
+
"epoch": 0.2549212598425197,
|
| 1908 |
+
"grad_norm": 13.11160659790039,
|
| 1909 |
+
"learning_rate": 2.524850894632207e-07,
|
| 1910 |
+
"loss": 2.1215,
|
| 1911 |
+
"step": 259
|
| 1912 |
+
},
|
| 1913 |
+
{
|
| 1914 |
+
"epoch": 0.2559055118110236,
|
| 1915 |
+
"grad_norm": 82.75247192382812,
|
| 1916 |
+
"learning_rate": 2.53479125248509e-07,
|
| 1917 |
+
"loss": 9.4851,
|
| 1918 |
+
"step": 260
|
| 1919 |
+
},
|
| 1920 |
+
{
|
| 1921 |
+
"epoch": 0.25688976377952755,
|
| 1922 |
+
"grad_norm": 10.959670066833496,
|
| 1923 |
+
"learning_rate": 2.5447316103379726e-07,
|
| 1924 |
+
"loss": 2.1982,
|
| 1925 |
+
"step": 261
|
| 1926 |
+
},
|
| 1927 |
+
{
|
| 1928 |
+
"epoch": 0.2578740157480315,
|
| 1929 |
+
"grad_norm": 35.51136016845703,
|
| 1930 |
+
"learning_rate": 2.554671968190855e-07,
|
| 1931 |
+
"loss": 3.0568,
|
| 1932 |
+
"step": 262
|
| 1933 |
+
},
|
| 1934 |
+
{
|
| 1935 |
+
"epoch": 0.2588582677165354,
|
| 1936 |
+
"grad_norm": 11.970784187316895,
|
| 1937 |
+
"learning_rate": 2.564612326043738e-07,
|
| 1938 |
+
"loss": 2.6269,
|
| 1939 |
+
"step": 263
|
| 1940 |
+
},
|
| 1941 |
+
{
|
| 1942 |
+
"epoch": 0.25984251968503935,
|
| 1943 |
+
"grad_norm": 13.664376258850098,
|
| 1944 |
+
"learning_rate": 2.5745526838966207e-07,
|
| 1945 |
+
"loss": 2.4792,
|
| 1946 |
+
"step": 264
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"epoch": 0.2608267716535433,
|
| 1950 |
+
"grad_norm": 10.64925479888916,
|
| 1951 |
+
"learning_rate": 2.5844930417495037e-07,
|
| 1952 |
+
"loss": 1.9445,
|
| 1953 |
+
"step": 265
|
| 1954 |
+
},
|
| 1955 |
+
{
|
| 1956 |
+
"epoch": 0.2618110236220472,
|
| 1957 |
+
"grad_norm": 13.321276664733887,
|
| 1958 |
+
"learning_rate": 2.5944333996023857e-07,
|
| 1959 |
+
"loss": 2.4061,
|
| 1960 |
+
"step": 266
|
| 1961 |
+
},
|
| 1962 |
+
{
|
| 1963 |
+
"epoch": 0.26279527559055116,
|
| 1964 |
+
"grad_norm": 77.70325469970703,
|
| 1965 |
+
"learning_rate": 2.604373757455269e-07,
|
| 1966 |
+
"loss": 8.3116,
|
| 1967 |
+
"step": 267
|
| 1968 |
+
},
|
| 1969 |
+
{
|
| 1970 |
+
"epoch": 0.2637795275590551,
|
| 1971 |
+
"grad_norm": 53.12438201904297,
|
| 1972 |
+
"learning_rate": 2.614314115308152e-07,
|
| 1973 |
+
"loss": 8.0804,
|
| 1974 |
+
"step": 268
|
| 1975 |
+
},
|
| 1976 |
+
{
|
| 1977 |
+
"epoch": 0.26476377952755903,
|
| 1978 |
+
"grad_norm": 10.435575485229492,
|
| 1979 |
+
"learning_rate": 2.6242544731610343e-07,
|
| 1980 |
+
"loss": 2.1674,
|
| 1981 |
+
"step": 269
|
| 1982 |
+
},
|
| 1983 |
+
{
|
| 1984 |
+
"epoch": 0.265748031496063,
|
| 1985 |
+
"grad_norm": 51.96613311767578,
|
| 1986 |
+
"learning_rate": 2.634194831013917e-07,
|
| 1987 |
+
"loss": 7.1975,
|
| 1988 |
+
"step": 270
|
| 1989 |
+
},
|
| 1990 |
+
{
|
| 1991 |
+
"epoch": 0.26673228346456695,
|
| 1992 |
+
"grad_norm": 46.066497802734375,
|
| 1993 |
+
"learning_rate": 2.6441351888667994e-07,
|
| 1994 |
+
"loss": 5.9104,
|
| 1995 |
+
"step": 271
|
| 1996 |
+
},
|
| 1997 |
+
{
|
| 1998 |
+
"epoch": 0.2677165354330709,
|
| 1999 |
+
"grad_norm": 11.553542137145996,
|
| 2000 |
+
"learning_rate": 2.6540755467196824e-07,
|
| 2001 |
+
"loss": 2.498,
|
| 2002 |
+
"step": 272
|
| 2003 |
+
},
|
| 2004 |
+
{
|
| 2005 |
+
"epoch": 0.2687007874015748,
|
| 2006 |
+
"grad_norm": 12.689590454101562,
|
| 2007 |
+
"learning_rate": 2.664015904572565e-07,
|
| 2008 |
+
"loss": 2.5249,
|
| 2009 |
+
"step": 273
|
| 2010 |
+
},
|
| 2011 |
+
{
|
| 2012 |
+
"epoch": 0.26968503937007876,
|
| 2013 |
+
"grad_norm": 11.272449493408203,
|
| 2014 |
+
"learning_rate": 2.6739562624254475e-07,
|
| 2015 |
+
"loss": 2.7152,
|
| 2016 |
+
"step": 274
|
| 2017 |
+
},
|
| 2018 |
+
{
|
| 2019 |
+
"epoch": 0.2706692913385827,
|
| 2020 |
+
"grad_norm": 11.380216598510742,
|
| 2021 |
+
"learning_rate": 2.6838966202783305e-07,
|
| 2022 |
+
"loss": 2.7904,
|
| 2023 |
+
"step": 275
|
| 2024 |
+
},
|
| 2025 |
+
{
|
| 2026 |
+
"epoch": 0.27165354330708663,
|
| 2027 |
+
"grad_norm": 13.75843334197998,
|
| 2028 |
+
"learning_rate": 2.693836978131213e-07,
|
| 2029 |
+
"loss": 2.7745,
|
| 2030 |
+
"step": 276
|
| 2031 |
+
},
|
| 2032 |
+
{
|
| 2033 |
+
"epoch": 0.27263779527559057,
|
| 2034 |
+
"grad_norm": 13.37204647064209,
|
| 2035 |
+
"learning_rate": 2.703777335984096e-07,
|
| 2036 |
+
"loss": 2.9741,
|
| 2037 |
+
"step": 277
|
| 2038 |
+
},
|
| 2039 |
+
{
|
| 2040 |
+
"epoch": 0.2736220472440945,
|
| 2041 |
+
"grad_norm": 11.115955352783203,
|
| 2042 |
+
"learning_rate": 2.7137176938369786e-07,
|
| 2043 |
+
"loss": 1.8215,
|
| 2044 |
+
"step": 278
|
| 2045 |
+
},
|
| 2046 |
+
{
|
| 2047 |
+
"epoch": 0.27460629921259844,
|
| 2048 |
+
"grad_norm": 26.816680908203125,
|
| 2049 |
+
"learning_rate": 2.723658051689861e-07,
|
| 2050 |
+
"loss": 4.6844,
|
| 2051 |
+
"step": 279
|
| 2052 |
+
},
|
| 2053 |
+
{
|
| 2054 |
+
"epoch": 0.2755905511811024,
|
| 2055 |
+
"grad_norm": 12.469667434692383,
|
| 2056 |
+
"learning_rate": 2.7335984095427437e-07,
|
| 2057 |
+
"loss": 2.8613,
|
| 2058 |
+
"step": 280
|
| 2059 |
+
},
|
| 2060 |
+
{
|
| 2061 |
+
"epoch": 0.2765748031496063,
|
| 2062 |
+
"grad_norm": 12.972196578979492,
|
| 2063 |
+
"learning_rate": 2.743538767395627e-07,
|
| 2064 |
+
"loss": 2.7147,
|
| 2065 |
+
"step": 281
|
| 2066 |
+
},
|
| 2067 |
+
{
|
| 2068 |
+
"epoch": 0.27755905511811024,
|
| 2069 |
+
"grad_norm": 12.858671188354492,
|
| 2070 |
+
"learning_rate": 2.75347912524851e-07,
|
| 2071 |
+
"loss": 2.814,
|
| 2072 |
+
"step": 282
|
| 2073 |
+
},
|
| 2074 |
+
{
|
| 2075 |
+
"epoch": 0.2785433070866142,
|
| 2076 |
+
"grad_norm": 10.301759719848633,
|
| 2077 |
+
"learning_rate": 2.763419483101392e-07,
|
| 2078 |
+
"loss": 2.3569,
|
| 2079 |
+
"step": 283
|
| 2080 |
+
},
|
| 2081 |
+
{
|
| 2082 |
+
"epoch": 0.2795275590551181,
|
| 2083 |
+
"grad_norm": 12.948614120483398,
|
| 2084 |
+
"learning_rate": 2.773359840954275e-07,
|
| 2085 |
+
"loss": 2.672,
|
| 2086 |
+
"step": 284
|
| 2087 |
+
},
|
| 2088 |
+
{
|
| 2089 |
+
"epoch": 0.28051181102362205,
|
| 2090 |
+
"grad_norm": 16.839580535888672,
|
| 2091 |
+
"learning_rate": 2.7833001988071574e-07,
|
| 2092 |
+
"loss": 3.2052,
|
| 2093 |
+
"step": 285
|
| 2094 |
+
},
|
| 2095 |
+
{
|
| 2096 |
+
"epoch": 0.281496062992126,
|
| 2097 |
+
"grad_norm": 12.991905212402344,
|
| 2098 |
+
"learning_rate": 2.7932405566600404e-07,
|
| 2099 |
+
"loss": 2.8056,
|
| 2100 |
+
"step": 286
|
| 2101 |
+
},
|
| 2102 |
+
{
|
| 2103 |
+
"epoch": 0.2824803149606299,
|
| 2104 |
+
"grad_norm": 12.984047889709473,
|
| 2105 |
+
"learning_rate": 2.803180914512923e-07,
|
| 2106 |
+
"loss": 2.6268,
|
| 2107 |
+
"step": 287
|
| 2108 |
+
},
|
| 2109 |
+
{
|
| 2110 |
+
"epoch": 0.28346456692913385,
|
| 2111 |
+
"grad_norm": 12.771299362182617,
|
| 2112 |
+
"learning_rate": 2.8131212723658055e-07,
|
| 2113 |
+
"loss": 2.5641,
|
| 2114 |
+
"step": 288
|
| 2115 |
+
},
|
| 2116 |
+
{
|
| 2117 |
+
"epoch": 0.2844488188976378,
|
| 2118 |
+
"grad_norm": 12.763790130615234,
|
| 2119 |
+
"learning_rate": 2.8230616302186885e-07,
|
| 2120 |
+
"loss": 2.4475,
|
| 2121 |
+
"step": 289
|
| 2122 |
+
},
|
| 2123 |
+
{
|
| 2124 |
+
"epoch": 0.2854330708661417,
|
| 2125 |
+
"grad_norm": 12.817102432250977,
|
| 2126 |
+
"learning_rate": 2.833001988071571e-07,
|
| 2127 |
+
"loss": 2.7377,
|
| 2128 |
+
"step": 290
|
| 2129 |
+
},
|
| 2130 |
+
{
|
| 2131 |
+
"epoch": 0.28641732283464566,
|
| 2132 |
+
"grad_norm": 11.62403678894043,
|
| 2133 |
+
"learning_rate": 2.842942345924454e-07,
|
| 2134 |
+
"loss": 2.3831,
|
| 2135 |
+
"step": 291
|
| 2136 |
+
},
|
| 2137 |
+
{
|
| 2138 |
+
"epoch": 0.2874015748031496,
|
| 2139 |
+
"grad_norm": 88.97967529296875,
|
| 2140 |
+
"learning_rate": 2.852882703777336e-07,
|
| 2141 |
+
"loss": 8.8069,
|
| 2142 |
+
"step": 292
|
| 2143 |
+
},
|
| 2144 |
+
{
|
| 2145 |
+
"epoch": 0.28838582677165353,
|
| 2146 |
+
"grad_norm": 12.380749702453613,
|
| 2147 |
+
"learning_rate": 2.862823061630219e-07,
|
| 2148 |
+
"loss": 2.186,
|
| 2149 |
+
"step": 293
|
| 2150 |
+
},
|
| 2151 |
+
{
|
| 2152 |
+
"epoch": 0.28937007874015747,
|
| 2153 |
+
"grad_norm": 12.181745529174805,
|
| 2154 |
+
"learning_rate": 2.8727634194831017e-07,
|
| 2155 |
+
"loss": 2.3389,
|
| 2156 |
+
"step": 294
|
| 2157 |
+
},
|
| 2158 |
+
{
|
| 2159 |
+
"epoch": 0.2903543307086614,
|
| 2160 |
+
"grad_norm": 11.23538875579834,
|
| 2161 |
+
"learning_rate": 2.8827037773359847e-07,
|
| 2162 |
+
"loss": 1.9744,
|
| 2163 |
+
"step": 295
|
| 2164 |
+
},
|
| 2165 |
+
{
|
| 2166 |
+
"epoch": 0.29133858267716534,
|
| 2167 |
+
"grad_norm": 13.454959869384766,
|
| 2168 |
+
"learning_rate": 2.892644135188867e-07,
|
| 2169 |
+
"loss": 2.4491,
|
| 2170 |
+
"step": 296
|
| 2171 |
+
},
|
| 2172 |
+
{
|
| 2173 |
+
"epoch": 0.29232283464566927,
|
| 2174 |
+
"grad_norm": 12.226387977600098,
|
| 2175 |
+
"learning_rate": 2.90258449304175e-07,
|
| 2176 |
+
"loss": 2.5668,
|
| 2177 |
+
"step": 297
|
| 2178 |
+
},
|
| 2179 |
+
{
|
| 2180 |
+
"epoch": 0.2933070866141732,
|
| 2181 |
+
"grad_norm": 13.08324146270752,
|
| 2182 |
+
"learning_rate": 2.912524850894633e-07,
|
| 2183 |
+
"loss": 2.1939,
|
| 2184 |
+
"step": 298
|
| 2185 |
+
},
|
| 2186 |
+
{
|
| 2187 |
+
"epoch": 0.29429133858267714,
|
| 2188 |
+
"grad_norm": 12.1226224899292,
|
| 2189 |
+
"learning_rate": 2.9224652087475153e-07,
|
| 2190 |
+
"loss": 2.2832,
|
| 2191 |
+
"step": 299
|
| 2192 |
+
},
|
| 2193 |
+
{
|
| 2194 |
+
"epoch": 0.2952755905511811,
|
| 2195 |
+
"grad_norm": 12.738725662231445,
|
| 2196 |
+
"learning_rate": 2.9324055666003984e-07,
|
| 2197 |
+
"loss": 2.7508,
|
| 2198 |
+
"step": 300
|
| 2199 |
+
},
|
| 2200 |
+
{
|
| 2201 |
+
"epoch": 0.296259842519685,
|
| 2202 |
+
"grad_norm": 13.919729232788086,
|
| 2203 |
+
"learning_rate": 2.9423459244532804e-07,
|
| 2204 |
+
"loss": 2.5206,
|
| 2205 |
+
"step": 301
|
| 2206 |
+
},
|
| 2207 |
+
{
|
| 2208 |
+
"epoch": 0.297244094488189,
|
| 2209 |
+
"grad_norm": 13.623347282409668,
|
| 2210 |
+
"learning_rate": 2.9522862823061634e-07,
|
| 2211 |
+
"loss": 2.3522,
|
| 2212 |
+
"step": 302
|
| 2213 |
+
},
|
| 2214 |
+
{
|
| 2215 |
+
"epoch": 0.29822834645669294,
|
| 2216 |
+
"grad_norm": 15.347495079040527,
|
| 2217 |
+
"learning_rate": 2.9622266401590465e-07,
|
| 2218 |
+
"loss": 2.7186,
|
| 2219 |
+
"step": 303
|
| 2220 |
+
},
|
| 2221 |
+
{
|
| 2222 |
+
"epoch": 0.2992125984251969,
|
| 2223 |
+
"grad_norm": 13.009486198425293,
|
| 2224 |
+
"learning_rate": 2.972166998011929e-07,
|
| 2225 |
+
"loss": 2.1369,
|
| 2226 |
+
"step": 304
|
| 2227 |
+
},
|
| 2228 |
+
{
|
| 2229 |
+
"epoch": 0.3001968503937008,
|
| 2230 |
+
"grad_norm": 77.14462280273438,
|
| 2231 |
+
"learning_rate": 2.9821073558648115e-07,
|
| 2232 |
+
"loss": 9.7972,
|
| 2233 |
+
"step": 305
|
| 2234 |
+
}
|
| 2235 |
+
],
|
| 2236 |
+
"logging_steps": 1,
|
| 2237 |
+
"max_steps": 3048,
|
| 2238 |
+
"num_input_tokens_seen": 0,
|
| 2239 |
+
"num_train_epochs": 3,
|
| 2240 |
+
"save_steps": 305,
|
| 2241 |
+
"stateful_callbacks": {
|
| 2242 |
+
"TrainerControl": {
|
| 2243 |
+
"args": {
|
| 2244 |
+
"should_epoch_stop": false,
|
| 2245 |
+
"should_evaluate": false,
|
| 2246 |
+
"should_log": false,
|
| 2247 |
+
"should_save": true,
|
| 2248 |
+
"should_training_stop": false
|
| 2249 |
+
},
|
| 2250 |
+
"attributes": {}
|
| 2251 |
+
}
|
| 2252 |
+
},
|
| 2253 |
+
"total_flos": 0.0,
|
| 2254 |
+
"train_batch_size": 32,
|
| 2255 |
+
"trial_name": null,
|
| 2256 |
+
"trial_params": null
|
| 2257 |
+
}
|
checkpoint-305/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0fdb17fe2085f73bdf532d3d0579a9cf6fc49d8c98add89223c5b3cc0f4b11cf
|
| 3 |
+
size 5624
|