File size: 1,286 Bytes
d754fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
library_name: transformers
tags:
- Uncensored
- Abliterated
- Cubed Reasoning
- QwQ-32B
- reasoning
- thinking
- r1
- cot
- deepseek
- Qwen2.5
- Hermes
- DeepHermes
- DeepSeek
- DeepSeek-R1-Distill
- 128k context
- merge
- mlx
- mlx-my-repo
base_model: DavidAU/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored
---

# bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit

The Model [bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit](https://huggingface.co/bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit) was converted to MLX format from [DavidAU/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored](https://huggingface.co/DavidAU/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored) using mlx-lm version **0.21.5**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```