| import torch | |
| from peft import PeftModel | |
| import transformers | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
| tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") | |
| BASE_MODEL = "mistralai/Mistral-7B-v0.1" | |
| LORA_WEIGHTS = "./qlora-out.mistral.0.9978/" | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| else: | |
| device = "cpu" | |
| try: | |
| if torch.backends.mps.is_available(): | |
| device = "mps" | |
| except: | |
| pass | |
| if device == "cuda": | |
| from transformers import BitsAndBytesConfig | |
| nf4_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_compute_dtype=torch.bfloat16 | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, quantization_config=nf4_config) | |
| model = PeftModel.from_pretrained( | |
| model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True | |
| ) | |
| elif device == "mps": | |
| model = AutoModelForCausalLM.from_pretrained( | |
| BASE_MODEL, | |
| device_map={"": device}, | |
| torch_dtype=torch.float16, | |
| ) | |
| model = PeftModel.from_pretrained( | |
| model, | |
| LORA_WEIGHTS, | |
| device_map={"": device}, | |
| torch_dtype=torch.float16, | |
| ) | |
| else: | |
| model = AutoModelForCausalLM.from_pretrained( | |
| BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True | |
| ) | |
| model = PeftModel.from_pretrained( | |
| model, | |
| LORA_WEIGHTS, | |
| device_map={"": device}, | |
| ) | |
| def generate_prompt(instruction, input=None): | |
| if input: | |
| return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
| ### Instruction: | |
| {instruction} | |
| ### Input: | |
| {input} | |
| ### Response:""" | |
| else: | |
| return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
| ### Instruction: | |
| {instruction} | |
| ### Response:""" | |
| if device != "cpu": | |
| model.half() | |
| model.eval() | |
| if torch.__version__ >= "2": | |
| model = torch.compile(model) | |
| def evaluate( | |
| instruction, | |
| input=None, | |
| temperature=0.1, | |
| top_p=0.75, | |
| top_k=40, | |
| num_beams=4, | |
| max_new_tokens=128, | |
| **kwargs, | |
| ): | |
| prompt = generate_prompt(instruction, input) | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| input_ids = inputs["input_ids"].to(device) | |
| generation_config = GenerationConfig( | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| num_beams=num_beams, | |
| **kwargs, | |
| ) | |
| with torch.no_grad(): | |
| generation_output = model.generate( | |
| input_ids=input_ids, | |
| generation_config=generation_config, | |
| return_dict_in_generate=True, | |
| output_scores=True, | |
| max_new_tokens=max_new_tokens, | |
| ) | |
| s = generation_output.sequences[0] | |
| output = tokenizer.decode(s) | |
| return output.split("### Response:")[1].strip() | |
| g = gr.Interface( | |
| fn=evaluate, | |
| inputs=[ | |
| gr.components.Textbox( | |
| lines=2, label="Utasítás", placeholder="Mesélj kicsit a szürkemarháról!" | |
| ), | |
| gr.components.Textbox(lines=2, label="Input", placeholder="üres"), | |
| gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), | |
| gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), | |
| gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), | |
| gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), | |
| gr.components.Slider( | |
| minimum=1, maximum=512, step=1, value=128, label="Max tokens" | |
| ), | |
| ], | |
| outputs=["text"], | |
| title="szürkemarha-mistral-v1", | |
| description="A szürkemarha-mistral egy fejlesztés alatt álló 7 milliárd paraméteres Mistral-0.1 alapú model LoRA finomhangolva instrukciókövetésre.", | |
| ) | |
| g.queue(concurrency_count=1) | |
| g.launch() |