--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-base-finetuned-lf-invalidation results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9234042553191489 --- # vit-msn-base-finetuned-lf-invalidation This model is a fine-tuned version of [facebook/vit-msn-base](https://huggingface.co/facebook/vit-msn-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2414 - Accuracy: 0.9234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 0.6512 | 0.6957 | | 0.7053 | 1.92 | 12 | 0.6311 | 0.6809 | | 0.7053 | 2.88 | 18 | 0.5361 | 0.7277 | | 0.5163 | 4.0 | 25 | 0.3341 | 0.8681 | | 0.3242 | 4.96 | 31 | 0.3167 | 0.8809 | | 0.3242 | 5.92 | 37 | 0.3960 | 0.8191 | | 0.2779 | 6.88 | 43 | 0.3818 | 0.8255 | | 0.2348 | 8.0 | 50 | 0.5019 | 0.7362 | | 0.2348 | 8.96 | 56 | 0.2944 | 0.8851 | | 0.26 | 9.92 | 62 | 0.2414 | 0.9234 | | 0.26 | 10.88 | 68 | 0.3664 | 0.8298 | | 0.2778 | 12.0 | 75 | 0.2505 | 0.9043 | | 0.2271 | 12.96 | 81 | 0.6277 | 0.6298 | | 0.2271 | 13.92 | 87 | 0.2753 | 0.8745 | | 0.2488 | 14.88 | 93 | 0.6249 | 0.6957 | | 0.2729 | 16.0 | 100 | 0.5195 | 0.7149 | | 0.2729 | 16.96 | 106 | 0.7984 | 0.5745 | | 0.3261 | 17.92 | 112 | 0.4631 | 0.7723 | | 0.3261 | 18.88 | 118 | 1.1010 | 0.5149 | | 0.2212 | 20.0 | 125 | 0.2337 | 0.9170 | | 0.2802 | 20.96 | 131 | 0.4638 | 0.7574 | | 0.2802 | 21.92 | 137 | 0.3859 | 0.8362 | | 0.2112 | 22.88 | 143 | 0.6708 | 0.6894 | | 0.2231 | 24.0 | 150 | 0.3387 | 0.8681 | | 0.2231 | 24.96 | 156 | 0.7045 | 0.6553 | | 0.2037 | 25.92 | 162 | 0.3958 | 0.8277 | | 0.2037 | 26.88 | 168 | 0.5082 | 0.7702 | | 0.1845 | 28.0 | 175 | 0.5991 | 0.7234 | | 0.1898 | 28.96 | 181 | 0.5108 | 0.7617 | | 0.1898 | 29.92 | 187 | 0.2720 | 0.9085 | | 0.2118 | 30.88 | 193 | 0.4936 | 0.7851 | | 0.2097 | 32.0 | 200 | 0.3748 | 0.8404 | | 0.2097 | 32.96 | 206 | 0.5048 | 0.7766 | | 0.1704 | 33.92 | 212 | 0.4368 | 0.7957 | | 0.1704 | 34.88 | 218 | 0.6959 | 0.6830 | | 0.1962 | 36.0 | 225 | 1.0097 | 0.5957 | | 0.1686 | 36.96 | 231 | 0.4992 | 0.7915 | | 0.1686 | 37.92 | 237 | 0.5374 | 0.7574 | | 0.1855 | 38.88 | 243 | 0.3710 | 0.8340 | | 0.1528 | 40.0 | 250 | 0.3631 | 0.8447 | | 0.1528 | 40.96 | 256 | 0.5589 | 0.7681 | | 0.1523 | 41.92 | 262 | 0.5147 | 0.7809 | | 0.1523 | 42.88 | 268 | 0.5299 | 0.7638 | | 0.1709 | 44.0 | 275 | 0.5937 | 0.7447 | | 0.1527 | 44.96 | 281 | 0.5969 | 0.7383 | | 0.1527 | 45.92 | 287 | 0.6439 | 0.7255 | | 0.1397 | 46.88 | 293 | 0.7721 | 0.6723 | | 0.1538 | 48.0 | 300 | 0.5768 | 0.7702 | | 0.1538 | 48.96 | 306 | 0.5801 | 0.7596 | | 0.1466 | 49.92 | 312 | 0.5673 | 0.7574 | | 0.1466 | 50.88 | 318 | 0.6469 | 0.7085 | | 0.1302 | 52.0 | 325 | 0.7276 | 0.6957 | | 0.1565 | 52.96 | 331 | 0.8247 | 0.6723 | | 0.1565 | 53.92 | 337 | 0.4811 | 0.7979 | | 0.1267 | 54.88 | 343 | 0.6373 | 0.7021 | | 0.1424 | 56.0 | 350 | 0.7252 | 0.6723 | | 0.1424 | 56.96 | 356 | 0.5697 | 0.7489 | | 0.1053 | 57.92 | 362 | 0.7067 | 0.6957 | | 0.1053 | 58.88 | 368 | 0.6577 | 0.7064 | | 0.1301 | 60.0 | 375 | 0.5326 | 0.7745 | | 0.0906 | 60.96 | 381 | 0.5468 | 0.7851 | | 0.0906 | 61.92 | 387 | 0.4413 | 0.8277 | | 0.0974 | 62.88 | 393 | 0.5479 | 0.7660 | | 0.1133 | 64.0 | 400 | 0.7109 | 0.7043 | | 0.1133 | 64.96 | 406 | 0.5735 | 0.7617 | | 0.1189 | 65.92 | 412 | 0.4084 | 0.8298 | | 0.1189 | 66.88 | 418 | 0.5716 | 0.7489 | | 0.1064 | 68.0 | 425 | 0.5537 | 0.7553 | | 0.1084 | 68.96 | 431 | 0.4569 | 0.8021 | | 0.1084 | 69.92 | 437 | 0.5227 | 0.7617 | | 0.1054 | 70.88 | 443 | 0.5995 | 0.7277 | | 0.1005 | 72.0 | 450 | 0.5560 | 0.7638 | | 0.1005 | 72.96 | 456 | 0.4550 | 0.8064 | | 0.1028 | 73.92 | 462 | 0.4404 | 0.8234 | | 0.1028 | 74.88 | 468 | 0.4761 | 0.7957 | | 0.0917 | 76.0 | 475 | 0.5278 | 0.7681 | | 0.1009 | 76.8 | 480 | 0.5346 | 0.7617 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1