vatrpp / models /positional_encodings.py
vittoriopippi
Initial commit
fa0f216
import numpy as np
import torch
import torch.nn as nn
def get_emb(sin_inp):
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = torch.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return torch.flatten(emb, -2, -1)
class PositionalEncoding1D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding1D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 2) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.cached_penc = None
def forward(self, tensor):
"""
:param tensor: A 3d tensor of size (batch_size, x, ch)
:return: Positional Encoding Matrix of size (batch_size, x, ch)
"""
if len(tensor.shape) != 3:
raise RuntimeError("The input tensor has to be 3d!")
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
return self.cached_penc
self.cached_penc = None
batch_size, x, orig_ch = tensor.shape
pos_x = torch.arange(x, device=tensor.device).type(self.inv_freq.type())
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
emb_x = get_emb(sin_inp_x)
emb = torch.zeros((x, self.channels), device=tensor.device).type(tensor.type())
emb[:, : self.channels] = emb_x
self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
return self.cached_penc
class PositionalEncodingPermute1D(nn.Module):
def __init__(self, channels):
"""
Accepts (batchsize, ch, x) instead of (batchsize, x, ch)
"""
super(PositionalEncodingPermute1D, self).__init__()
self.penc = PositionalEncoding1D(channels)
def forward(self, tensor):
tensor = tensor.permute(0, 2, 1)
enc = self.penc(tensor)
return enc.permute(0, 2, 1)
@property
def org_channels(self):
return self.penc.org_channels
class PositionalEncoding2D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding2D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 4) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.cached_penc = None
def forward(self, tensor):
"""
:param tensor: A 4d tensor of size (batch_size, x, y, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, ch)
"""
if len(tensor.shape) != 4:
raise RuntimeError("The input tensor has to be 4d!")
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
return self.cached_penc
self.cached_penc = None
batch_size, x, y, orig_ch = tensor.shape
pos_x = torch.arange(x, device=tensor.device).type(self.inv_freq.type())
pos_y = torch.arange(y, device=tensor.device).type(self.inv_freq.type())
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1)
emb_y = get_emb(sin_inp_y)
emb = torch.zeros((x, y, self.channels * 2), device=tensor.device).type(
tensor.type()
)
emb[:, :, : self.channels] = emb_x
emb[:, :, self.channels : 2 * self.channels] = emb_y
self.cached_penc = emb[None, :, :, :orig_ch].repeat(tensor.shape[0], 1, 1, 1)
return self.cached_penc
class PositionalEncodingPermute2D(nn.Module):
def __init__(self, channels):
"""
Accepts (batchsize, ch, x, y) instead of (batchsize, x, y, ch)
"""
super(PositionalEncodingPermute2D, self).__init__()
self.penc = PositionalEncoding2D(channels)
def forward(self, tensor):
tensor = tensor.permute(0, 2, 3, 1)
enc = self.penc(tensor)
return enc.permute(0, 3, 1, 2)
@property
def org_channels(self):
return self.penc.org_channels
class PositionalEncoding3D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding3D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 6) * 2)
if channels % 2:
channels += 1
self.channels = channels
inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.cached_penc = None
def forward(self, tensor):
"""
:param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
"""
if len(tensor.shape) != 5:
raise RuntimeError("The input tensor has to be 5d!")
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
return self.cached_penc
self.cached_penc = None
batch_size, x, y, z, orig_ch = tensor.shape
pos_x = torch.arange(x, device=tensor.device).type(self.inv_freq.type())
pos_y = torch.arange(y, device=tensor.device).type(self.inv_freq.type())
pos_z = torch.arange(z, device=tensor.device).type(self.inv_freq.type())
sin_inp_x = torch.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = torch.einsum("i,j->ij", pos_y, self.inv_freq)
sin_inp_z = torch.einsum("i,j->ij", pos_z, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
emb_y = get_emb(sin_inp_y).unsqueeze(1)
emb_z = get_emb(sin_inp_z)
emb = torch.zeros((x, y, z, self.channels * 3), device=tensor.device).type(
tensor.type()
)
emb[:, :, :, : self.channels] = emb_x
emb[:, :, :, self.channels : 2 * self.channels] = emb_y
emb[:, :, :, 2 * self.channels :] = emb_z
self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
return self.cached_penc
class PositionalEncodingPermute3D(nn.Module):
def __init__(self, channels):
"""
Accepts (batchsize, ch, x, y, z) instead of (batchsize, x, y, z, ch)
"""
super(PositionalEncodingPermute3D, self).__init__()
self.penc = PositionalEncoding3D(channels)
def forward(self, tensor):
tensor = tensor.permute(0, 2, 3, 4, 1)
enc = self.penc(tensor)
return enc.permute(0, 4, 1, 2, 3)
@property
def org_channels(self):
return self.penc.org_channels
class Summer(nn.Module):
def __init__(self, penc):
"""
:param model: The type of positional encoding to run the summer on.
"""
super(Summer, self).__init__()
self.penc = penc
def forward(self, tensor):
"""
:param tensor: A 3, 4 or 5d tensor that matches the model output size
:return: Positional Encoding Matrix summed to the original tensor
"""
penc = self.penc(tensor)
assert (
tensor.size() == penc.size()
), "The original tensor size {} and the positional encoding tensor size {} must match!".format(
tensor.size(), penc.size()
)
return tensor + penc
class SparsePositionalEncoding2D(PositionalEncoding2D):
def __init__(self, channels, x, y, device='cuda'):
super(SparsePositionalEncoding2D, self).__init__(channels)
self.y, self.x = y, x
self.fake_tensor = torch.zeros((1, x, y, channels), device=device)
def forward(self, coords):
"""
:param coords: A list of list of coordinates (((x1, y1), (x2, y22), ... ), ... )
:return: Positional Encoding Matrix summed to the original tensor
"""
encodings = super().forward(self.fake_tensor)
encodings = encodings.permute(0, 3, 1, 2)
indices = torch.nn.utils.rnn.pad_sequence([torch.LongTensor(c) for c in coords], batch_first=True, padding_value=-1)
indices = indices.unsqueeze(0).to(self.fake_tensor.device)
assert self.x == self.y
indices = (indices + 0.5) / self.x * 2 - 1
indices = torch.flip(indices, (-1, ))
return torch.nn.functional.grid_sample(encodings, indices).squeeze().permute(2, 1, 0)
# all_encodings = []
# for coords_row in coords:
# res_encodings = []
# for xy in coords_row:
# if xy is None:
# res_encodings.append(padding)
# else:
# x, y = xy
# res_encodings.append(encodings[x, y, :])
# all_encodings.append(res_encodings)
# return torch.stack(res_encodings).to(self.fake_tensor.device)
# coords = torch.Tensor(coords).to(self.fake_tensor.device).long()
# assert torch.all(coords[:, 0] < self.x)
# assert torch.all(coords[:, 1] < self.y)
# coords = coords[:, 0] + (coords[:, 1] * self.x)
# encodings = super().forward(self.fake_tensor).reshape((-1, self.org_channels))
# return encodings[coords]
if __name__ == '__main__':
pos = SparsePositionalEncoding2D(10, 10, 20)
pos([[0, 0], [0, 9], [1, 0], [9, 15]])