|
|
|
""" |
|
Misc functions, including distributed helpers. |
|
|
|
Mostly copy-paste from torchvision references. |
|
""" |
|
import argparse |
|
import os |
|
import subprocess |
|
import time |
|
from collections import defaultdict, deque |
|
import datetime |
|
import pickle |
|
from typing import Optional, List |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch import Tensor |
|
|
|
|
|
import torchvision |
|
|
|
|
|
class EpochLossTracker: |
|
def __init__(self): |
|
self.values = defaultdict(lambda: 0.0) |
|
self.batch_counter = 0 |
|
|
|
def add_batch(self, loss_values: dict): |
|
for key, value in loss_values.items(): |
|
self.values[key] += value |
|
|
|
self.batch_counter += 1 |
|
|
|
def get_epoch_loss(self): |
|
return {k: v / self.batch_counter for k, v in self.values.items()} |
|
|
|
def reset(self): |
|
self.values = defaultdict(lambda: 0.0) |
|
self.batch_counter = 0 |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
def all_gather(data): |
|
""" |
|
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
Args: |
|
data: any picklable object |
|
Returns: |
|
list[data]: list of data gathered from each rank |
|
""" |
|
world_size = get_world_size() |
|
if world_size == 1: |
|
return [data] |
|
|
|
|
|
buffer = pickle.dumps(data) |
|
storage = torch.ByteStorage.from_buffer(buffer) |
|
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
|
|
|
local_size = torch.tensor([tensor.numel()], device="cuda") |
|
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] |
|
dist.all_gather(size_list, local_size) |
|
size_list = [int(size.item()) for size in size_list] |
|
max_size = max(size_list) |
|
|
|
|
|
|
|
|
|
tensor_list = [] |
|
for _ in size_list: |
|
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) |
|
if local_size != max_size: |
|
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") |
|
tensor = torch.cat((tensor, padding), dim=0) |
|
dist.all_gather(tensor_list, tensor) |
|
|
|
data_list = [] |
|
for size, tensor in zip(size_list, tensor_list): |
|
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
data_list.append(pickle.loads(buffer)) |
|
|
|
return data_list |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that all processes |
|
have the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.all_reduce(values) |
|
if average: |
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
if torch.cuda.is_available(): |
|
log_msg = self.delimiter.join([ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}', |
|
'max mem: {memory:.0f}' |
|
]) |
|
else: |
|
log_msg = self.delimiter.join([ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
]) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('{} Total time: {} ({:.4f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
def get_sha(): |
|
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
def _run(command): |
|
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() |
|
sha = 'N/A' |
|
diff = "clean" |
|
branch = 'N/A' |
|
try: |
|
sha = _run(['git', 'rev-parse', 'HEAD']) |
|
subprocess.check_output(['git', 'diff'], cwd=cwd) |
|
diff = _run(['git', 'diff-index', 'HEAD']) |
|
diff = "has uncommited changes" if diff else "clean" |
|
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) |
|
except Exception: |
|
pass |
|
message = f"sha: {sha}, status: {diff}, branch: {branch}" |
|
return message |
|
|
|
|
|
def collate_fn(batch): |
|
batch = list(zip(*batch)) |
|
batch[0] = nested_tensor_from_tensor_list(batch[0]) |
|
return tuple(batch) |
|
|
|
|
|
def _max_by_axis(the_list): |
|
|
|
maxes = the_list[0] |
|
for sublist in the_list[1:]: |
|
for index, item in enumerate(sublist): |
|
maxes[index] = max(maxes[index], item) |
|
return maxes |
|
|
|
|
|
class NestedTensor(object): |
|
def __init__(self, tensors, mask: Optional[Tensor]): |
|
self.tensors = tensors |
|
self.mask = mask |
|
|
|
def to(self, device): |
|
|
|
cast_tensor = self.tensors.to(device) |
|
mask = self.mask |
|
if mask is not None: |
|
assert mask is not None |
|
cast_mask = mask.to(device) |
|
else: |
|
cast_mask = None |
|
return NestedTensor(cast_tensor, cast_mask) |
|
|
|
def decompose(self): |
|
return self.tensors, self.mask |
|
|
|
def __repr__(self): |
|
return str(self.tensors) |
|
|
|
|
|
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): |
|
|
|
if tensor_list[0].ndim == 3: |
|
if torchvision._is_tracing(): |
|
|
|
|
|
return _onnx_nested_tensor_from_tensor_list(tensor_list) |
|
|
|
|
|
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) |
|
|
|
batch_shape = [len(tensor_list)] + max_size |
|
b, c, h, w = batch_shape |
|
dtype = tensor_list[0].dtype |
|
device = tensor_list[0].device |
|
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) |
|
mask = torch.ones((b, h, w), dtype=torch.bool, device=device) |
|
for img, pad_img, m in zip(tensor_list, tensor, mask): |
|
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
m[: img.shape[1], :img.shape[2]] = False |
|
else: |
|
raise ValueError('not supported') |
|
return NestedTensor(tensor, mask) |
|
|
|
|
|
|
|
|
|
@torch.jit.unused |
|
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: |
|
max_size = [] |
|
for i in range(tensor_list[0].dim()): |
|
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64) |
|
max_size.append(max_size_i) |
|
max_size = tuple(max_size) |
|
|
|
|
|
|
|
|
|
|
|
padded_imgs = [] |
|
padded_masks = [] |
|
for img in tensor_list: |
|
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] |
|
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) |
|
padded_imgs.append(padded_img) |
|
|
|
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) |
|
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) |
|
padded_masks.append(padded_mask.to(torch.bool)) |
|
|
|
tensor = torch.stack(padded_imgs) |
|
mask = torch.stack(padded_masks) |
|
|
|
return NestedTensor(tensor, mask=mask) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
else: |
|
print('Not using distributed mode') |
|
args.distributed = False |
|
return |
|
|
|
args.distributed = True |
|
|
|
torch.cuda.set_device(args.gpu) |
|
args.dist_backend = 'nccl' |
|
print('| distributed init (rank {}): {}'.format( |
|
args.rank, args.dist_url), flush=True) |
|
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
world_size=args.world_size, rank=args.rank) |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
@torch.no_grad() |
|
def accuracy(output, target, topk=(1,)): |
|
"""Computes the precision@k for the specified values of k""" |
|
if target.numel() == 0: |
|
return [torch.zeros([], device=output.device)] |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
|
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
|
res = [] |
|
for k in topk: |
|
correct_k = correct[:k].view(-1).float().sum(0) |
|
res.append(correct_k.mul_(100.0 / batch_size)) |
|
return res |
|
|
|
|
|
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): |
|
|
|
""" |
|
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. |
|
This will eventually be supported natively by PyTorch, and this |
|
class can go away. |
|
""" |
|
if float(torchvision.__version__[:3]) < 0.7: |
|
if input.numel() > 0: |
|
return torch.nn.functional.interpolate( |
|
input, size, scale_factor, mode, align_corners |
|
) |
|
|
|
output_shape = _output_size(2, input, size, scale_factor) |
|
output_shape = list(input.shape[:-2]) + list(output_shape) |
|
return _new_empty_tensor(input, output_shape) |
|
else: |
|
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
|
|
def add_vatr_args(parser): |
|
parser.add_argument("--feat_model_path", type=str, default='files/resnet_18_pretrained.pth') |
|
parser.add_argument("--label_encoder", default='default', type=str) |
|
parser.add_argument("--save_model_path", default='saved_models', type=str) |
|
parser.add_argument("--dataset", default='IAM', type=str) |
|
parser.add_argument("--english_words_path", default='files/english_words.txt', type=str) |
|
parser.add_argument("--wandb", action='store_true') |
|
|
|
parser.add_argument("--no_writer_loss", action='store_true') |
|
parser.add_argument("--writer_loss_weight", type=float, default=1.0) |
|
parser.add_argument("--no_ocr_loss", action='store_true') |
|
|
|
parser.add_argument("--img_height", default=32, type=int) |
|
parser.add_argument("--resolution", default=16, type=int) |
|
parser.add_argument("--batch_size", default=8, type=int) |
|
parser.add_argument("--num_examples", default=15, type=int) |
|
parser.add_argument("--num_writers", default=339, type=int) |
|
|
|
parser.add_argument("--alphabet", |
|
default='Only thewigsofrcvdampbkuq.A-210xT5\'MDL,RYHJ"ISPWENj&BC93VGFKz();#:!7U64Q8?+*ZX/%', |
|
type=str) |
|
parser.add_argument("--special_alphabet", default='ΑαΒβΓγΔδΕεΖζΗηΘθΙιΚκΛλΜμΝνΞξΟοΠπΡρΣσςΤτΥυΦφΧχΨψΩω', type=str) |
|
parser.add_argument("--g_lr", default=0.00005, type=float) |
|
parser.add_argument("--d_lr", default=0.00001, type=float) |
|
parser.add_argument("--w_lr", default=0.00005, type=float) |
|
parser.add_argument("--ocr_lr", default=0.00005, type=float) |
|
parser.add_argument("--epochs", default=100_000, type=int) |
|
|
|
parser.add_argument("--num_workers", default=0, type=int) |
|
parser.add_argument("--seed", default=742, type=int) |
|
parser.add_argument("--num_words", default=3, type=int) |
|
parser.add_argument("--is_cycle", action="store_true") |
|
parser.add_argument("--add_noise", default=False, type=bool) |
|
parser.add_argument("--save_model", default=5, type=int) |
|
parser.add_argument("--save_model_history", default=500, type=int) |
|
parser.add_argument("--tag", default='debug', type=str) |
|
parser.add_argument("--device", default='cuda' if torch.cuda.is_available() else 'cpu', type=str) |
|
parser.add_argument("--query_input", default='unifont', type=str) |
|
|
|
parser.add_argument("--corpus", default="standard", type=str) |
|
parser.add_argument("--text-augment-strength", default=0.0, type=float) |
|
parser.add_argument("--text-aug-type", type=str, default="proportional") |
|
parser.add_argument("--file-suffix", type=str, default=None) |
|
|
|
parser.add_argument("--augment-ocr", action="store_true") |
|
parser.add_argument("--d-crop-size", type=int, nargs='*') |
|
|
|
return parser |
|
|
|
|
|
class FakeArgs: |
|
feat_model_path = 'files/resnet_18_pretrained.pth' |
|
label_encoder = 'default' |
|
save_model_path = 'saved_models' |
|
dataset = 'IAM' |
|
english_words_path = 'files/english_words.txt' |
|
wandb = False |
|
no_writer_loss = False |
|
writer_loss_weight = 1.0 |
|
no_ocr_loss = False |
|
img_height = 32 |
|
resolution = 16 |
|
batch_size = 32 |
|
num_workers = 4 |
|
num_epochs = 100 |
|
lr = 0.0001 |
|
num_examples = 15 |
|
is_kld = False |
|
tn_hidden_dim = 512 |
|
tn_nheads = 8 |
|
tn_dim_feedforward = 512 |
|
tn_dropout = 0.1 |
|
tn_enc_layers = 3 |
|
tn_dec_layers = 3 |
|
alphabet = 'Only thewigsofrcvdampbkuq.A-210xT5\'MDL,RYHJ"ISPWENj&BC93VGFKz();#:!7U64Q8?+*ZX/%' |
|
special_alphabet = 'ΑαΒβΓγΔδΕεΖζΗηΘθΙιΚκΛλΜμΝνΞξΟοΠπΡρΣσςΤτΥυΦφΧχΨψΩω' |
|
query_input = 'unifont' |
|
projection = 'linear' |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
vocab_size = len(alphabet) |
|
num_writers = 339 |
|
g_lr = 0.00005 |
|
d_lr = 0.00005 |
|
w_lr = 0.00005 |
|
ocr_lr = 0.00005 |
|
add_noise = True |
|
text_augment_strength = 0.0 |
|
corpus = "standard" |
|
text_aug_start = 0 |
|
text_aug_warmup = 1 |
|
d_crop_size = None |
|
arch_blur_size = 0 |
|
|
|
|
|
def get_default_args(): |
|
parser = argparse.ArgumentParser() |
|
parser = add_vatr_args(parser) |
|
|
|
args = parser.parse_args() |
|
args.num_writers = 339 |
|
|
|
return args |
|
|
|
|
|
class LinearScheduler: |
|
def __init__(self, param_value: float, start_epoch : int = 0, warmup_epochs: int = 0): |
|
self.start_epoch = start_epoch |
|
self.warmup_epochs = warmup_epochs |
|
self.param_value = param_value |
|
|
|
def get_value(self, epoch): |
|
if self.start_epoch != 0 and epoch < self.start_epoch: |
|
return 0.0 |
|
else: |
|
return min(self.param_value, (max(epoch - self.start_epoch, 1) / max(self.warmup_epochs, 1)) * self.param_value) |
|
|
|
|
|
if __name__ == "__main__": |
|
import matplotlib.pyplot as plt |
|
|
|
scheduler = LinearScheduler(0.0, 0, 0) |
|
|
|
v= [] |
|
for i in range(1000): |
|
v.append(scheduler.get_value(i)) |
|
|
|
plt.plot(v) |
|
plt.show() |