|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
class ResBlocks(nn.Module): |
|
def __init__(self, num_blocks, dim, norm, activation, pad_type): |
|
super(ResBlocks, self).__init__() |
|
self.model = [] |
|
for i in range(num_blocks): |
|
self.model += [ResBlock(dim, |
|
norm=norm, |
|
activation=activation, |
|
pad_type=pad_type)] |
|
self.model = nn.Sequential(*self.model) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'): |
|
super(ResBlock, self).__init__() |
|
model = [] |
|
model += [Conv2dBlock(dim, dim, 3, 1, 1, |
|
norm=norm, |
|
activation=activation, |
|
pad_type=pad_type)] |
|
model += [Conv2dBlock(dim, dim, 3, 1, 1, |
|
norm=norm, |
|
activation='none', |
|
pad_type=pad_type)] |
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.model(x) |
|
out += residual |
|
return out |
|
|
|
|
|
class ActFirstResBlock(nn.Module): |
|
def __init__(self, fin, fout, fhid=None, |
|
activation='lrelu', norm='none'): |
|
super().__init__() |
|
self.learned_shortcut = (fin != fout) |
|
self.fin = fin |
|
self.fout = fout |
|
self.fhid = min(fin, fout) if fhid is None else fhid |
|
self.conv_0 = Conv2dBlock(self.fin, self.fhid, 3, 1, |
|
padding=1, pad_type='reflect', norm=norm, |
|
activation=activation, activation_first=True) |
|
self.conv_1 = Conv2dBlock(self.fhid, self.fout, 3, 1, |
|
padding=1, pad_type='reflect', norm=norm, |
|
activation=activation, activation_first=True) |
|
if self.learned_shortcut: |
|
self.conv_s = Conv2dBlock(self.fin, self.fout, 1, 1, |
|
activation='none', use_bias=False) |
|
|
|
def forward(self, x): |
|
x_s = self.conv_s(x) if self.learned_shortcut else x |
|
dx = self.conv_0(x) |
|
dx = self.conv_1(dx) |
|
out = x_s + dx |
|
return out |
|
|
|
|
|
class LinearBlock(nn.Module): |
|
def __init__(self, in_dim, out_dim, norm='none', activation='relu'): |
|
super(LinearBlock, self).__init__() |
|
use_bias = True |
|
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias) |
|
|
|
|
|
norm_dim = out_dim |
|
if norm == 'bn': |
|
self.norm = nn.BatchNorm1d(norm_dim) |
|
elif norm == 'in': |
|
self.norm = nn.InstanceNorm1d(norm_dim) |
|
elif norm == 'none': |
|
self.norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(norm) |
|
|
|
|
|
if activation == 'relu': |
|
self.activation = nn.ReLU(inplace=False) |
|
elif activation == 'lrelu': |
|
self.activation = nn.LeakyReLU(0.2, inplace=False) |
|
elif activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
elif activation == 'none': |
|
self.activation = None |
|
else: |
|
assert 0, "Unsupported activation: {}".format(activation) |
|
|
|
def forward(self, x): |
|
out = self.fc(x) |
|
if self.norm: |
|
out = self.norm(out) |
|
if self.activation: |
|
out = self.activation(out) |
|
return out |
|
|
|
|
|
class Conv2dBlock(nn.Module): |
|
def __init__(self, in_dim, out_dim, ks, st, padding=0, |
|
norm='none', activation='relu', pad_type='zero', |
|
use_bias=True, activation_first=False): |
|
super(Conv2dBlock, self).__init__() |
|
self.use_bias = use_bias |
|
self.activation_first = activation_first |
|
|
|
if pad_type == 'reflect': |
|
self.pad = nn.ReflectionPad2d(padding) |
|
elif pad_type == 'replicate': |
|
self.pad = nn.ReplicationPad2d(padding) |
|
elif pad_type == 'zero': |
|
self.pad = nn.ZeroPad2d(padding) |
|
else: |
|
assert 0, "Unsupported padding type: {}".format(pad_type) |
|
|
|
|
|
norm_dim = out_dim |
|
if norm == 'bn': |
|
self.norm = nn.BatchNorm2d(norm_dim) |
|
elif norm == 'in': |
|
self.norm = nn.InstanceNorm2d(norm_dim) |
|
elif norm == 'adain': |
|
self.norm = AdaptiveInstanceNorm2d(norm_dim) |
|
elif norm == 'none': |
|
self.norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(norm) |
|
|
|
|
|
if activation == 'relu': |
|
self.activation = nn.ReLU(inplace=False) |
|
elif activation == 'lrelu': |
|
self.activation = nn.LeakyReLU(0.2, inplace=False) |
|
elif activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
elif activation == 'none': |
|
self.activation = None |
|
else: |
|
assert 0, "Unsupported activation: {}".format(activation) |
|
|
|
self.conv = nn.Conv2d(in_dim, out_dim, ks, st, bias=self.use_bias) |
|
|
|
def forward(self, x): |
|
if self.activation_first: |
|
if self.activation: |
|
x = self.activation(x) |
|
x = self.conv(self.pad(x)) |
|
if self.norm: |
|
x = self.norm(x) |
|
else: |
|
x = self.conv(self.pad(x)) |
|
if self.norm: |
|
x = self.norm(x) |
|
if self.activation: |
|
x = self.activation(x) |
|
return x |
|
|
|
|
|
class AdaptiveInstanceNorm2d(nn.Module): |
|
def __init__(self, num_features, eps=1e-5, momentum=0.1): |
|
super(AdaptiveInstanceNorm2d, self).__init__() |
|
self.num_features = num_features |
|
self.eps = eps |
|
self.momentum = momentum |
|
self.weight = None |
|
self.bias = None |
|
self.register_buffer('running_mean', torch.zeros(num_features)) |
|
self.register_buffer('running_var', torch.ones(num_features)) |
|
|
|
def forward(self, x): |
|
assert self.weight is not None and \ |
|
self.bias is not None, "Please assign AdaIN weight first" |
|
b, c = x.size(0), x.size(1) |
|
running_mean = self.running_mean.repeat(b) |
|
running_var = self.running_var.repeat(b) |
|
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:]) |
|
out = F.batch_norm( |
|
x_reshaped, running_mean, running_var, self.weight, self.bias, |
|
True, self.momentum, self.eps) |
|
return out.view(b, c, *x.size()[2:]) |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + '(' + str(self.num_features) + ')' |
|
|