File size: 7,258 Bytes
fa0f216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import argparse
import random
import math
import time
import os
import numpy as np
import torch
import wandb
from data.dataset import TextDataset, CollectionTextDataset
from models.model import VATr
from util.misc import EpochLossTracker, add_vatr_args, LinearScheduler
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--resume", action='store_true')
parser = add_vatr_args(parser)
args = parser.parse_args()
rSeed(args.seed)
dataset = CollectionTextDataset(
args.dataset, 'files', TextDataset, file_suffix=args.file_suffix, num_examples=args.num_examples,
collator_resolution=args.resolution, min_virtual_size=339, validation=False, debug=False, height=args.img_height
)
datasetval = CollectionTextDataset(
args.dataset, 'files', TextDataset, file_suffix=args.file_suffix, num_examples=args.num_examples,
collator_resolution=args.resolution, min_virtual_size=161, validation=True, height=args.img_height
)
args.num_writers = dataset.num_writers
if args.dataset == 'IAM' or args.dataset == 'CVL':
args.alphabet = 'Only thewigsofrcvdampbkuq.A-210xT5\'MDL,RYHJ"ISPWENj&BC93VGFKz();#:!7U64Q8?+*ZX/%'
else:
args.alphabet = ''.join(sorted(set(dataset.alphabet + datasetval.alphabet)))
args.special_alphabet = ''.join(c for c in args.special_alphabet if c not in dataset.alphabet)
args.exp_name = f"{args.dataset}-{args.num_writers}-{args.num_examples}-LR{args.g_lr}-bs{args.batch_size}-{args.tag}"
config = {k: v for k, v in args.__dict__.items() if isinstance(v, (bool, int, str, float))}
args.wandb = args.wandb and (not torch.cuda.is_available() or torch.cuda.get_device_name(0) != 'Tesla K80')
wandb_id = wandb.util.generate_id()
MODEL_PATH = os.path.join(args.save_model_path, args.exp_name)
os.makedirs(MODEL_PATH, exist_ok=True)
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True, drop_last=True,
collate_fn=dataset.collate_fn)
val_loader = torch.utils.data.DataLoader(
datasetval,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True, drop_last=True,
collate_fn=datasetval.collate_fn)
model = VATr(args)
start_epoch = 0
del config['alphabet']
del config['special_alphabet']
wandb_params = {
'project': 'VATr',
'config': config,
'name': args.exp_name,
'id': wandb_id
}
checkpoint_path = os.path.join(MODEL_PATH, 'model.pth')
loss_tracker = EpochLossTracker()
if args.resume and os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location=args.device)
model.load_state_dict(checkpoint['model'])
start_epoch = checkpoint['epoch']
wandb_params['id'] = checkpoint['wandb_id']
wandb_params['resume'] = True
print(checkpoint_path + ' : Model loaded Successfully')
elif args.resume:
raise FileNotFoundError(f'No model found at {checkpoint_path}')
else:
if args.feat_model_path is not None and args.feat_model_path.lower() != 'none':
print('Loading...', args.feat_model_path)
assert os.path.exists(args.feat_model_path)
checkpoint = torch.load(args.feat_model_path, map_location=args.device)
checkpoint['model']['conv1.weight'] = checkpoint['model']['conv1.weight'].mean(1).unsqueeze(1)
del checkpoint['model']['fc.weight']
del checkpoint['model']['fc.bias']
miss, unexp = model.netG.Feat_Encoder.load_state_dict(checkpoint['model'], strict=False)
if not os.path.isdir(MODEL_PATH):
os.mkdir(MODEL_PATH)
else:
print(f'WARNING: No resume of Resnet-18, starting from scratch')
if args.wandb:
wandb.init(**wandb_params)
wandb.watch(model)
print(f"Starting training")
for epoch in range(start_epoch, args.epochs):
start_time = time.time()
log_time = time.time()
loss_tracker.reset()
model.d_acc.update(0.0)
if args.text_augment_strength > 0:
model.set_text_aug_strength(args.text_augment_strength)
for i, data in enumerate(train_loader):
model.update_parameters(epoch)
model._set_input(data)
model.optimize_G_only()
model.optimize_G_step()
model.optimize_D_OCR()
model.optimize_D_OCR_step()
model.optimize_G_WL()
model.optimize_G_step()
model.optimize_D_WL()
model.optimize_D_WL_step()
if time.time() - log_time > 10:
print(
f'Epoch {epoch} {i / len(train_loader) * 100:.02f}% running, current time: {time.time() - start_time:.2f} s')
log_time = time.time()
batch_losses = model.get_current_losses()
batch_losses['d_acc'] = model.d_acc.avg
loss_tracker.add_batch(batch_losses)
end_time = time.time()
data_val = next(iter(val_loader))
losses = loss_tracker.get_epoch_loss()
page = model._generate_page(model.sdata, model.input['swids'])
page_val = model._generate_page(data_val['simg'].to(args.device), data_val['swids'])
d_train, d_val, d_fake = model.compute_d_stats(train_loader, val_loader)
if args.wandb:
wandb.log({
'loss-G': losses['G'],
'loss-D': losses['D'],
'loss-Dfake': losses['Dfake'],
'loss-Dreal': losses['Dreal'],
'loss-OCR_fake': losses['OCR_fake'],
'loss-OCR_real': losses['OCR_real'],
'loss-w_fake': losses['w_fake'],
'loss-w_real': losses['w_real'],
'd_acc': losses['d_acc'],
'd-rv': (d_train - d_val) / (d_train - d_fake),
'd-fake': d_fake,
'd-real': d_train,
'd-val': d_val,
'l_cycle': losses['cycle'],
'epoch': epoch,
'timeperepoch': end_time - start_time,
'result': [wandb.Image(page, caption="page"), wandb.Image(page_val, caption="page_val")],
'd-crop-size': model.netD.augmenter.get_current_width() if model.netD.crop else 0
})
print({'EPOCH': epoch, 'TIME': end_time - start_time, 'LOSSES': losses})
print(f"Text sample: {model.get_text_sample(10)}")
checkpoint = {
'model': model.state_dict(),
'wandb_id': wandb_id,
'epoch': epoch
}
if epoch % args.save_model == 0:
torch.save(checkpoint, os.path.join(MODEL_PATH, 'model.pth'))
if epoch % args.save_model_history == 0:
torch.save(checkpoint, os.path.join(MODEL_PATH, f'{epoch:04d}_model.pth'))
def rSeed(sd):
random.seed(sd)
np.random.seed(sd)
torch.manual_seed(sd)
torch.cuda.manual_seed(sd)
if __name__ == "__main__":
print("Training Model")
main()
wandb.finish()
|