File size: 7,258 Bytes
fa0f216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import random
import math
import time
import os

import numpy as np
import torch
import wandb

from data.dataset import TextDataset, CollectionTextDataset
from models.model import VATr
from util.misc import EpochLossTracker, add_vatr_args, LinearScheduler


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--resume", action='store_true')
    parser = add_vatr_args(parser)

    args = parser.parse_args()

    rSeed(args.seed)
    dataset = CollectionTextDataset(
        args.dataset, 'files', TextDataset, file_suffix=args.file_suffix, num_examples=args.num_examples,
        collator_resolution=args.resolution, min_virtual_size=339, validation=False, debug=False, height=args.img_height
    )
    datasetval = CollectionTextDataset(
        args.dataset, 'files', TextDataset, file_suffix=args.file_suffix, num_examples=args.num_examples,
        collator_resolution=args.resolution, min_virtual_size=161, validation=True, height=args.img_height
    )

    args.num_writers = dataset.num_writers

    if args.dataset == 'IAM' or args.dataset == 'CVL':
        args.alphabet = 'Only thewigsofrcvdampbkuq.A-210xT5\'MDL,RYHJ"ISPWENj&BC93VGFKz();#:!7U64Q8?+*ZX/%'
    else:
        args.alphabet = ''.join(sorted(set(dataset.alphabet + datasetval.alphabet)))
        args.special_alphabet = ''.join(c for c in args.special_alphabet if c not in dataset.alphabet)

    args.exp_name = f"{args.dataset}-{args.num_writers}-{args.num_examples}-LR{args.g_lr}-bs{args.batch_size}-{args.tag}"

    config = {k: v for k, v in args.__dict__.items() if isinstance(v, (bool, int, str, float))}
    args.wandb = args.wandb and (not torch.cuda.is_available() or torch.cuda.get_device_name(0) != 'Tesla K80')
    wandb_id = wandb.util.generate_id()

    MODEL_PATH = os.path.join(args.save_model_path, args.exp_name)
    os.makedirs(MODEL_PATH, exist_ok=True)

    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
        pin_memory=True, drop_last=True,
        collate_fn=dataset.collate_fn)

    val_loader = torch.utils.data.DataLoader(
        datasetval,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
        pin_memory=True, drop_last=True,
        collate_fn=datasetval.collate_fn)

    model = VATr(args)
    start_epoch = 0

    del config['alphabet']
    del config['special_alphabet']

    wandb_params = {
        'project': 'VATr',
        'config': config,
        'name': args.exp_name,
        'id': wandb_id
    }

    checkpoint_path = os.path.join(MODEL_PATH, 'model.pth')

    loss_tracker = EpochLossTracker()

    if args.resume and os.path.exists(checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location=args.device)
        model.load_state_dict(checkpoint['model'])
        start_epoch = checkpoint['epoch']
        wandb_params['id'] = checkpoint['wandb_id']
        wandb_params['resume'] = True
        print(checkpoint_path + ' : Model loaded Successfully')
    elif args.resume:
        raise FileNotFoundError(f'No model found at {checkpoint_path}')
    else:
        if args.feat_model_path is not None and args.feat_model_path.lower() != 'none':
            print('Loading...', args.feat_model_path)
            assert os.path.exists(args.feat_model_path)
            checkpoint = torch.load(args.feat_model_path, map_location=args.device)
            checkpoint['model']['conv1.weight'] = checkpoint['model']['conv1.weight'].mean(1).unsqueeze(1)
            del checkpoint['model']['fc.weight']
            del checkpoint['model']['fc.bias']
            miss, unexp = model.netG.Feat_Encoder.load_state_dict(checkpoint['model'], strict=False)
            if not os.path.isdir(MODEL_PATH):
                os.mkdir(MODEL_PATH)
        else:
            print(f'WARNING: No resume of Resnet-18, starting from scratch')

    if args.wandb:
        wandb.init(**wandb_params)
        wandb.watch(model)

    print(f"Starting training")
    for epoch in range(start_epoch, args.epochs):
        start_time = time.time()
        log_time = time.time()
        loss_tracker.reset()
        model.d_acc.update(0.0)
        if args.text_augment_strength > 0:
            model.set_text_aug_strength(args.text_augment_strength)

        for i, data in enumerate(train_loader):
            model.update_parameters(epoch)
            model._set_input(data)

            model.optimize_G_only()
            model.optimize_G_step()

            model.optimize_D_OCR()
            model.optimize_D_OCR_step()

            model.optimize_G_WL()
            model.optimize_G_step()

            model.optimize_D_WL()
            model.optimize_D_WL_step()

            if time.time() - log_time > 10:
                print(
                    f'Epoch {epoch} {i / len(train_loader) * 100:.02f}% running, current time: {time.time() - start_time:.2f} s')
                log_time = time.time()

            batch_losses = model.get_current_losses()
            batch_losses['d_acc'] = model.d_acc.avg
            loss_tracker.add_batch(batch_losses)

        end_time = time.time()
        data_val = next(iter(val_loader))
        losses = loss_tracker.get_epoch_loss()
        page = model._generate_page(model.sdata, model.input['swids'])
        page_val = model._generate_page(data_val['simg'].to(args.device), data_val['swids'])

        d_train, d_val, d_fake = model.compute_d_stats(train_loader, val_loader)

        if args.wandb:
            wandb.log({
                'loss-G': losses['G'],
                'loss-D': losses['D'],
                'loss-Dfake': losses['Dfake'],
                'loss-Dreal': losses['Dreal'],
                'loss-OCR_fake': losses['OCR_fake'],
                'loss-OCR_real': losses['OCR_real'],
                'loss-w_fake': losses['w_fake'],
                'loss-w_real': losses['w_real'],
                'd_acc': losses['d_acc'],
                'd-rv': (d_train - d_val) / (d_train - d_fake),
                'd-fake': d_fake,
                'd-real': d_train,
                'd-val': d_val,
                'l_cycle': losses['cycle'],
                'epoch': epoch,
                'timeperepoch': end_time - start_time,
                'result': [wandb.Image(page, caption="page"), wandb.Image(page_val, caption="page_val")],
                'd-crop-size': model.netD.augmenter.get_current_width() if model.netD.crop else 0
            })

        print({'EPOCH': epoch, 'TIME': end_time - start_time, 'LOSSES': losses})
        print(f"Text sample: {model.get_text_sample(10)}")

        checkpoint = {
            'model': model.state_dict(),
            'wandb_id': wandb_id,
            'epoch': epoch
        }
        if epoch % args.save_model == 0:
            torch.save(checkpoint, os.path.join(MODEL_PATH, 'model.pth'))

        if epoch % args.save_model_history == 0:
            torch.save(checkpoint, os.path.join(MODEL_PATH, f'{epoch:04d}_model.pth'))


def rSeed(sd):
    random.seed(sd)
    np.random.seed(sd)
    torch.manual_seed(sd)
    torch.cuda.manual_seed(sd)


if __name__ == "__main__":
    print("Training Model")
    main()
    wandb.finish()