File size: 10,113 Bytes
fa0f216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os.path
import pickle
import random
from abc import ABC, abstractmethod
import cv2
import numpy as np
import math
import torch
import torchvision.transforms
import torchvision.transforms.functional as F
from matplotlib import pyplot as plt
from data.dataset import CollectionTextDataset, TextDataset
def to_opencv(batch: torch.Tensor):
images = []
for image in batch:
image = image.detach().cpu().numpy()
image = (image + 1.0) / 2.0
images.append(np.squeeze(image))
return images
class RandomMorphological(torch.nn.Module):
def __init__(self, max_size: 5, max_iterations = 1, operation = cv2.MORPH_ERODE):
super().__init__()
self.elements = [cv2.MORPH_RECT, cv2.MORPH_ELLIPSE]
self.max_size = max_size
self.max_iterations = max_iterations
self.operation = operation
def forward(self, x):
device = x.device
images = to_opencv(x)
result = []
size = random.randint(1, self.max_size)
kernel = cv2.getStructuringElement(random.choice(self.elements), (size, size))
for image in images:
image = cv2.resize(image, (image.shape[1] * 2, image.shape[0] * 2))
morphed = cv2.morphologyEx(image, op=self.operation, kernel=kernel, iterations=random.randint(1, self.max_iterations))
morphed = cv2.resize(morphed, (image.shape[1] // 2, image.shape[0] // 2))
morphed = morphed * 2.0 - 1.0
result.append(torch.Tensor(morphed))
return torch.unsqueeze(torch.stack(result).to(device), dim=1)
def gauss_noise_tensor(img):
# https://github.com/pytorch/vision/issues/6192
assert isinstance(img, torch.Tensor)
dtype = img.dtype
if not img.is_floating_point():
img = img.to(torch.float32)
sigma = 0.075
out = img + sigma * (torch.randn_like(img) - 0.5)
out = torch.clamp(out, -1.0, 1.0)
if out.dtype != dtype:
out = out.to(dtype)
return out
def compute_word_width(image: torch.Tensor) -> int:
indices = torch.where((image < 0).int())[2]
index = torch.max(indices) if len(indices) > 0 else image.size(-1)
return index
class Downsize(torch.nn.Module):
def __init__(self):
super().__init__()
self.aug = torchvision.transforms.Compose([
torchvision.transforms.RandomAffine(0.0, scale=(0.8, 1.0), interpolation=torchvision.transforms.InterpolationMode.NEAREST, fill=1.0),
torchvision.transforms.GaussianBlur(3, sigma=0.3)
])
def forward(self, x):
return self.aug(x)
class OCRAugment(torch.nn.Module):
def __init__(self, prob: float = 0.5, no: int = 2):
super().__init__()
self.prob = prob
self.no = no
interp = torchvision.transforms.InterpolationMode.NEAREST
fill = 1.0
self.augmentations = [
torchvision.transforms.RandomRotation(3.0, interpolation=interp, fill=fill),
torchvision.transforms.RandomAffine(0.0, translate=(0.05, 0.05), interpolation=interp, fill=fill),
Downsize(),
torchvision.transforms.ElasticTransform(alpha=10.0, sigma=7.0, fill=fill, interpolation=interp),
torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5),
torchvision.transforms.GaussianBlur(3, sigma=(0.1, 1.0)),
gauss_noise_tensor,
RandomMorphological(max_size=4, max_iterations=2, operation=cv2.MORPH_ERODE),
RandomMorphological(max_size=2, max_iterations=1, operation=cv2.MORPH_DILATE)
]
def forward(self, x):
if random.uniform(0.0, 1.0) > self.prob:
return x
augmentations = random.choices(self.augmentations, k=self.no)
for augmentation in augmentations:
x = augmentation(x)
return x
class WordCrop(torch.nn.Module, ABC):
def __init__(self, use_padding: bool = False):
super().__init__()
self.use_padding = use_padding
self.pad = torchvision.transforms.Pad([2, 2, 2, 2], 1.0)
@abstractmethod
def get_current_width(self):
pass
@abstractmethod
def update(self, epoch: int):
pass
def forward(self, images):
assert len(images.size()) == 4 and images.size(1) == 1, "Augmentation works on batches of one channel images"
if self.use_padding:
images = self.pad(images)
results = []
width = self.get_current_width()
for image in images:
index = compute_word_width(image)
max_index = max(min(index - width // 2, image.size(2) - width), 0)
start_index = random.randint(0, max_index)
results.append(F.crop(image, 0, start_index, image.size(1), min(width, image.size(2))))
return torch.stack(results)
class StaticWordCrop(WordCrop):
def __init__(self, width: int, use_padding: bool = False):
super().__init__(use_padding=use_padding)
self.width = width
def get_current_width(self):
return int(self.width)
def update(self, epoch: int):
pass
class RandomWordCrop(WordCrop):
def __init__(self, min_width: int, max_width: int, use_padding: bool = False):
super().__init__(use_padding)
self.min_width = min_width
self.max_width = max_width
self.current_width = random.randint(self.min_width, self.max_width)
def update(self, epoch: int):
self.current_width = random.randint(self.min_width, self.max_width)
def get_current_width(self):
return self.current_width
class FullCrop(torch.nn.Module):
def __init__(self, width: int):
super().__init__()
self.width = width
self.height = 32
self.pad = torchvision.transforms.Pad([6, 6, 6, 6], 1.0)
def get_current_width(self):
return self.width
def forward(self, images):
assert len(images.size()) == 4 and images.size(1) == 1, "Augmentation works on batches of one channel images"
images = self.pad(images)
results = []
for image in images:
index = compute_word_width(image)
max_index = max(min(index - self.width // 2, image.size(2) - self.width), 0)
start_width = random.randint(0, max_index)
start_height = random.randint(0, image.size(1) - self.height)
results.append(F.crop(image, start_height, start_width, self.height, min(self.width, image.size(2))))
return torch.stack(results)
class ProgressiveWordCrop(WordCrop):
def __init__(self, width: int, warmup_epochs: int, start_width: int = 128, use_padding: bool = False):
super().__init__(use_padding=use_padding)
self.target_width = width
self.warmup_epochs = warmup_epochs
self.start_width = start_width
self.current_width = float(start_width)
def update(self, epoch: int):
value = self.start_width - ((self.start_width - self.target_width) / self.warmup_epochs) * epoch
self.current_width = max(value, self.target_width)
def get_current_width(self):
return int(round(self.current_width))
class CycleWordCrop(WordCrop):
def __init__(self, width: int, cycle_epochs: int, start_width: int = 128, use_padding: bool = False):
super().__init__(use_padding=use_padding)
self.target_width = width
self.start_width = start_width
self.current_width = float(start_width)
self.cycle_epochs = float(cycle_epochs)
def update(self, epoch: int):
value = (math.cos((float(epoch) * 2 * math.pi) / self.cycle_epochs) + 1) * ((self.start_width - self.target_width) / 2) + self.target_width
self.current_width = value
def get_current_width(self):
return int(round(self.current_width))
class HeightResize(torch.nn.Module):
def __init__(self, target_height: int):
super().__init__()
self.target_height = target_height
def forward(self, x):
width, height = F.get_image_size(x)
scale = self.target_height / height
return F.resize(x, [int(height * scale), int(width * scale)])
def show_crops():
with open("../files/IAM-32-pa.pickle", 'rb') as f:
data = pickle.load(f)
for author in data['train'].keys():
for image in data['train'][author]:
image = torch.Tensor(np.expand_dims(np.expand_dims(np.array(image['img']), 0), 0))
augmenter = torchvision.transforms.Compose([
HeightResize(32),
FullCrop(128)
])
batch = augmenter(image)
batch = batch.detach().cpu().numpy()
result = [np.squeeze(im) for im in batch]
#plt.imshow(np.squeeze(image))
f, ax = plt.subplots(1, len(result))
for i in range(len(result)):
ax.imshow(result[i])
plt.show()
if __name__ == "__main__":
dataset = CollectionTextDataset(
'IAM', '../files', TextDataset, file_suffix='pa', num_examples=15,
collator_resolution=16, min_virtual_size=339, validation=False, debug=False
)
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=8,
shuffle=True,
pin_memory=True, drop_last=True,
collate_fn=dataset.collate_fn)
augmenter = OCRAugment(no=3, prob=1.0)
target_folder = r"C:\Users\bramv\Documents\Werk\Research\Unimore\VATr\VATr_ext\saved_images\debug\ocr_aug"
image_no = 0
for batch in train_loader:
for i in range(5):
augmented = augmenter(batch["img"])
img = np.squeeze((augmented[0].detach().cpu().numpy() + 1.0) / 2.0)
img = (img * 255.0).astype(np.uint8)
print(cv2.imwrite(os.path.join(target_folder, f"{image_no}_{i}.png"), img))
img = np.squeeze((batch["img"][0].detach().cpu().numpy() + 1.0) / 2.0)
img = (img * 255.0).astype(np.uint8)
cv2.imwrite(os.path.join(target_folder, f"{image_no}.png"), img)
if image_no > 5:
break
image_no+=1
|