File size: 34,959 Bytes
fa0f216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
import torch.utils.data
from torch.nn import CTCLoss
from torch.nn.utils import clip_grad_norm_
import sys
import torchvision.models as models
from models.inception import InceptionV3
from models.transformer import *
from util.augmentations import OCRAugment
from util.misc import SmoothedValue
from util.text import get_generator, AugmentedGenerator
from .BigGAN_networks import *
from .OCR_network import *
from models.blocks import Conv2dBlock, ResBlocks
from util.util import loss_hinge_dis, loss_hinge_gen, make_one_hot
import models.config as config
from .positional_encodings import PositionalEncoding1D
from models.unifont_module import UnifontModule
from PIL import Image
def get_rgb(x):
R = 255 - int(int(x > 0.5) * 255 * (x - 0.5) / 0.5)
G = 0
B = 255 + int(int(x < 0.5) * 255 * (x - 0.5) / 0.5)
return R, G, B
def get_page_from_words(word_lists, MAX_IMG_WIDTH=800):
line_all = []
line_t = []
width_t = 0
for i in word_lists:
width_t = width_t + i.shape[1] + 16
if width_t > MAX_IMG_WIDTH:
line_all.append(np.concatenate(line_t, 1))
line_t = []
width_t = i.shape[1] + 16
line_t.append(i)
line_t.append(np.ones((i.shape[0], 16)))
if len(line_all) == 0:
line_all.append(np.concatenate(line_t, 1))
max_lin_widths = MAX_IMG_WIDTH # max([i.shape[1] for i in line_all])
gap_h = np.ones([16, max_lin_widths])
page_ = []
for l in line_all:
pad_ = np.ones([l.shape[0], max_lin_widths - l.shape[1]])
page_.append(np.concatenate([l, pad_], 1))
page_.append(gap_h)
page = np.concatenate(page_, 0)
return page * 255
class FCNDecoder(nn.Module):
def __init__(self, ups=3, n_res=2, dim=512, out_dim=1, res_norm='adain', activ='relu', pad_type='reflect'):
super(FCNDecoder, self).__init__()
self.model = []
self.model += [ResBlocks(n_res, dim, res_norm,
activ, pad_type=pad_type)]
for i in range(ups):
self.model += [nn.Upsample(scale_factor=2),
Conv2dBlock(dim, dim // 2, 5, 1, 2,
norm='in',
activation=activ,
pad_type=pad_type)]
dim //= 2
self.model += [Conv2dBlock(dim, out_dim, 7, 1, 3,
norm='none',
activation='tanh',
pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
y = self.model(x)
return y
class Generator(nn.Module):
def __init__(self, args):
super(Generator, self).__init__()
self.args = args
INP_CHANNEL = 1
encoder_layer = TransformerEncoderLayer(config.tn_hidden_dim, config.tn_nheads,
config.tn_dim_feedforward,
config.tn_dropout, "relu", True)
encoder_norm = nn.LayerNorm(config.tn_hidden_dim) if True else None
self.encoder = TransformerEncoder(encoder_layer, config.tn_enc_layers, encoder_norm)
decoder_layer = TransformerDecoderLayer(config.tn_hidden_dim, config.tn_nheads,
config.tn_dim_feedforward,
config.tn_dropout, "relu", True)
decoder_norm = nn.LayerNorm(config.tn_hidden_dim)
self.decoder = TransformerDecoder(decoder_layer, config.tn_dec_layers, decoder_norm,
return_intermediate=True)
self.Feat_Encoder = models.resnet18(weights='ResNet18_Weights.DEFAULT')
self.Feat_Encoder.conv1 = nn.Conv2d(INP_CHANNEL, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.Feat_Encoder.fc = nn.Identity()
self.Feat_Encoder.avgpool = nn.Identity()
# self.query_embed = nn.Embedding(self.args.vocab_size, self.args.tn_hidden_dim)
self.query_embed = UnifontModule(
config.tn_dim_feedforward,
self.args.alphabet + self.args.special_alphabet,
input_type=self.args.query_input,
device=self.args.device
)
self.pos_encoder = PositionalEncoding1D(config.tn_hidden_dim)
self.linear_q = nn.Linear(config.tn_dim_feedforward, config.tn_dim_feedforward * 8)
self.DEC = FCNDecoder(res_norm='in', dim=config.tn_hidden_dim)
self.noise = torch.distributions.Normal(loc=torch.tensor([0.]), scale=torch.tensor([1.0]))
def evaluate(self, style_images, queries):
style = self.compute_style(style_images)
results = []
for i in range(queries.shape[1]):
query = queries[:, i, :]
h = self.generate(style, query)
results.append(h.detach())
return results
def compute_style(self, style_images):
B, N, R, C = style_images.shape
FEAT_ST = self.Feat_Encoder(style_images.view(B * N, 1, R, C))
FEAT_ST = FEAT_ST.view(B, 512, 1, -1)
FEAT_ST_ENC = FEAT_ST.flatten(2).permute(2, 0, 1)
memory = self.encoder(FEAT_ST_ENC)
return memory
def generate(self, style_vector, query):
query_embed = self.query_embed(query).permute(1, 0, 2)
tgt = torch.zeros_like(query_embed)
hs = self.decoder(tgt, style_vector, query_pos=query_embed)
h = hs.transpose(1, 2)[-1]
if self.args.add_noise:
h = h + self.noise.sample(h.size()).squeeze(-1).to(self.args.device)
h = self.linear_q(h)
h = h.contiguous()
h = h.view(h.size(0), h.shape[1] * 2, 4, -1)
h = h.permute(0, 3, 2, 1)
h = self.DEC(h)
return h
def forward(self, style_images, query):
enc_attn_weights, dec_attn_weights = [], []
self.hooks = [
self.encoder.layers[-1].self_attn.register_forward_hook(
lambda self, input, output: enc_attn_weights.append(output[1])
),
self.decoder.layers[-1].multihead_attn.register_forward_hook(
lambda self, input, output: dec_attn_weights.append(output[1])
),
]
style = self.compute_style(style_images)
h = self.generate(style, query)
self.dec_attn_weights = dec_attn_weights[-1].detach()
self.enc_attn_weights = enc_attn_weights[-1].detach()
for hook in self.hooks:
hook.remove()
return h, style
class VATr(nn.Module):
def __init__(self, args):
super(VATr, self).__init__()
self.args = args
self.args.vocab_size = len(args.alphabet)
self.epsilon = 1e-7
self.netG = Generator(self.args).to(self.args.device)
self.netD = Discriminator(
resolution=self.args.resolution, crop_size=args.d_crop_size,
).to(self.args.device)
self.netW = WDiscriminator(resolution=self.args.resolution, n_classes=self.args.vocab_size, output_dim=self.args.num_writers)
self.netW = self.netW.to(self.args.device)
self.netconverter = strLabelConverter(self.args.alphabet + self.args.special_alphabet)
self.netOCR = CRNN(self.args).to(self.args.device)
self.ocr_augmenter = OCRAugment(prob=0.5, no=3)
self.OCR_criterion = CTCLoss(zero_infinity=True, reduction='none')
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
self.inception = InceptionV3([block_idx]).to(self.args.device)
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
lr=self.args.g_lr, betas=(0.0, 0.999), weight_decay=0, eps=1e-8)
self.optimizer_OCR = torch.optim.Adam(self.netOCR.parameters(),
lr=self.args.ocr_lr, betas=(0.0, 0.999), weight_decay=0, eps=1e-8)
self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
lr=self.args.d_lr, betas=(0.0, 0.999), weight_decay=0, eps=1e-8)
self.optimizer_wl = torch.optim.Adam(self.netW.parameters(),
lr=self.args.w_lr, betas=(0.0, 0.999), weight_decay=0, eps=1e-8)
self.optimizers = [self.optimizer_G, self.optimizer_OCR, self.optimizer_D, self.optimizer_wl]
self.optimizer_G.zero_grad()
self.optimizer_OCR.zero_grad()
self.optimizer_D.zero_grad()
self.optimizer_wl.zero_grad()
self.loss_G = 0
self.loss_D = 0
self.loss_Dfake = 0
self.loss_Dreal = 0
self.loss_OCR_fake = 0
self.loss_OCR_real = 0
self.loss_w_fake = 0
self.loss_w_real = 0
self.Lcycle = 0
self.d_acc = SmoothedValue()
self.word_generator = get_generator(args)
self.epoch = 0
with open('mytext.txt', 'r', encoding='utf-8') as f:
self.text = f.read()
self.text = self.text.replace('\n', ' ')
self.text = self.text.replace('\n', ' ')
self.text = ''.join(c for c in self.text if c in (self.args.alphabet + self.args.special_alphabet)) # just to avoid problems with the font dataset
self.text = [word.encode() for word in self.text.split()] # [:args.num_examples]
self.eval_text_encode, self.eval_len_text, self.eval_encode_pos = self.netconverter.encode(self.text)
self.eval_text_encode = self.eval_text_encode.to(self.args.device).repeat(self.args.batch_size, 1, 1)
self.rv_sample_size = 64 * 4
self.last_fakes = []
def update_last_fakes(self, fakes):
for fake in fakes:
self.last_fakes.append(fake)
self.last_fakes = self.last_fakes[-self.rv_sample_size:]
def update_acc(self, pred_real, pred_fake):
correct = (pred_real >= 0.5).float().sum() + (pred_fake < 0.5).float().sum()
self.d_acc.update(correct / (len(pred_real) + len(pred_fake)))
def set_text_aug_strength(self, strength):
if not isinstance(self.word_generator, AugmentedGenerator):
print("WARNING: Text generator is not augmented, strength cannot be set")
else:
self.word_generator.set_strength(strength)
def get_text_aug_strength(self):
if isinstance(self.word_generator, AugmentedGenerator):
return self.word_generator.strength
else:
return 0.0
def update_parameters(self, epoch: int):
self.epoch = epoch
self.netD.update_parameters(epoch)
self.netW.update_parameters(epoch)
def get_text_sample(self, size: int) -> list:
return [self.word_generator.generate() for _ in range(size)]
def _generate_fakes(self, ST, eval_text_encode=None, eval_len_text=None):
if eval_text_encode == None:
eval_text_encode = self.eval_text_encode
if eval_len_text == None:
eval_len_text = self.eval_len_text
self.fakes = self.netG.evaluate(ST, eval_text_encode)
np_fakes = []
for batch_idx in range(self.fakes[0].shape[0]):
for idx, fake in enumerate(self.fakes):
fake = fake[batch_idx, 0, :, :eval_len_text[idx] * self.args.resolution]
fake = (fake + 1) / 2
np_fakes.append(fake.cpu().numpy())
return np_fakes
def _generate_page(self, ST, SLEN, eval_text_encode=None, eval_len_text=None, eval_encode_pos=None, lwidth=260, rwidth=980):
# ST -> Style?
if eval_text_encode == None:
eval_text_encode = self.eval_text_encode
if eval_len_text == None:
eval_len_text = self.eval_len_text
if eval_encode_pos is None:
eval_encode_pos = self.eval_encode_pos
text_encode, text_len, _ = self.netconverter.encode(self.args.special_alphabet)
symbols = self.netG.query_embed.symbols[text_encode].reshape(-1, 16, 16).cpu().numpy()
imgs = [Image.fromarray(s).resize((32, 32), resample=0) for s in symbols]
special_examples = 1 - np.concatenate([np.array(i) for i in imgs], axis=-1)
self.fakes = self.netG.evaluate(ST, eval_text_encode)
page1s = []
page2s = []
for batch_idx in range(ST.shape[0]):
word_t = []
word_l = []
gap = np.ones([self.args.img_height, 16])
line_wids = []
for idx, fake_ in enumerate(self.fakes):
word_t.append((fake_[batch_idx, 0, :, :eval_len_text[idx] * self.args.resolution].cpu().numpy() + 1) / 2)
word_t.append(gap)
if sum(t.shape[-1] for t in word_t) >= rwidth or idx == len(self.fakes) - 1 or (len(self.fakes) - len(self.args.special_alphabet) - 1) == idx:
line_ = np.concatenate(word_t, -1)
word_l.append(line_)
line_wids.append(line_.shape[1])
word_t = []
# add the examples from the UnifontModules
word_l.append(special_examples)
line_wids.append(special_examples.shape[1])
gap_h = np.ones([16, max(line_wids)])
page_ = []
for l in word_l:
pad_ = np.ones([self.args.img_height, max(line_wids) - l.shape[1]])
page_.append(np.concatenate([l, pad_], 1))
page_.append(gap_h)
page1 = np.concatenate(page_, 0)
word_t = []
word_l = []
line_wids = []
sdata_ = [i.unsqueeze(1) for i in torch.unbind(ST, 1)]
gap = np.ones([sdata_[0].shape[-2], 16])
for idx, st in enumerate((sdata_)):
word_t.append((st[batch_idx, 0, :, :int(SLEN.cpu().numpy()[batch_idx][idx])].cpu().numpy() + 1) / 2)
# word_t.append((st[batch_idx, 0, :, :].cpu().numpy() + 1) / 2)
word_t.append(gap)
if sum(t.shape[-1] for t in word_t) >= lwidth or idx == len(sdata_) - 1:
line_ = np.concatenate(word_t, -1)
word_l.append(line_)
line_wids.append(line_.shape[1])
word_t = []
gap_h = np.ones([16, max(line_wids)])
page_ = []
for l in word_l:
pad_ = np.ones([sdata_[0].shape[-2], max(line_wids) - l.shape[1]])
page_.append(np.concatenate([l, pad_], 1))
page_.append(gap_h)
page2 = np.concatenate(page_, 0)
merge_w_size = max(page1.shape[0], page2.shape[0])
if page1.shape[0] != merge_w_size:
page1 = np.concatenate([page1, np.ones([merge_w_size - page1.shape[0], page1.shape[1]])], 0)
if page2.shape[0] != merge_w_size:
page2 = np.concatenate([page2, np.ones([merge_w_size - page2.shape[0], page2.shape[1]])], 0)
page1s.append(page1)
page2s.append(page2)
# page = np.concatenate([page2, page1], 1)
page1s_ = np.concatenate(page1s, 0)
max_wid = max([i.shape[1] for i in page2s])
padded_page2s = []
for para in page2s:
padded_page2s.append(np.concatenate([para, np.ones([para.shape[0], max_wid - para.shape[1]])], 1))
padded_page2s_ = np.concatenate(padded_page2s, 0)
return np.concatenate([padded_page2s_, page1s_], 1)
def get_current_losses(self):
losses = {}
losses['G'] = self.loss_G
losses['D'] = self.loss_D
losses['Dfake'] = self.loss_Dfake
losses['Dreal'] = self.loss_Dreal
losses['OCR_fake'] = self.loss_OCR_fake
losses['OCR_real'] = self.loss_OCR_real
losses['w_fake'] = self.loss_w_fake
losses['w_real'] = self.loss_w_real
losses['cycle'] = self.Lcycle
return losses
def _set_input(self, input):
self.input = input
self.real = self.input['img'].to(self.args.device)
self.label = self.input['label']
self.set_ocr_data(self.input['img'], self.input['label'])
self.sdata = self.input['simg'].to(self.args.device)
self.slabels = self.input['slabels']
self.ST_LEN = self.input['swids']
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def forward(self):
self.text_encode, self.len_text, self.encode_pos = self.netconverter.encode(self.label)
self.text_encode = self.text_encode.to(self.args.device).detach()
self.len_text = self.len_text.detach()
self.words = [self.word_generator.generate().encode('utf-8') for _ in range(self.args.batch_size)]
self.text_encode_fake, self.len_text_fake, self.encode_pos_fake = self.netconverter.encode(self.words)
self.text_encode_fake = self.text_encode_fake.to(self.args.device)
self.one_hot_fake = make_one_hot(self.text_encode_fake, self.len_text_fake, self.args.vocab_size).to(
self.args.device)
self.fake, self.style = self.netG(self.sdata, self.text_encode_fake)
self.update_last_fakes(self.fake)
def pad_width(self, t, new_width):
result = torch.ones((t.size(0), t.size(1), t.size(2), new_width), device=t.device)
result[:,:,:,:t.size(-1)] = t
return result
def compute_real_ocr_loss(self, ocr_network = None):
network = ocr_network if ocr_network is not None else self.netOCR
real_input = self.ocr_images
input_images = real_input
input_labels = self.ocr_labels
input_images = input_images.detach()
if self.ocr_augmenter is not None:
input_images = self.ocr_augmenter(input_images)
pred_real = network(input_images)
preds_size = torch.IntTensor([pred_real.size(0)] * len(input_labels)).detach()
text_encode, len_text, _ = self.netconverter.encode(input_labels)
loss = self.OCR_criterion(pred_real, text_encode.detach(), preds_size, len_text.detach())
return torch.mean(loss[~torch.isnan(loss)])
def compute_fake_ocr_loss(self, ocr_network = None):
network = ocr_network if ocr_network is not None else self.netOCR
pred_fake_OCR = network(self.fake)
preds_size = torch.IntTensor([pred_fake_OCR.size(0)] * self.args.batch_size).detach()
loss_OCR_fake = self.OCR_criterion(pred_fake_OCR, self.text_encode_fake.detach(), preds_size,
self.len_text_fake.detach())
return torch.mean(loss_OCR_fake[~torch.isnan(loss_OCR_fake)])
def set_ocr_data(self, images, labels):
self.ocr_images = images.to(self.args.device)
self.ocr_labels = labels
def backward_D_OCR(self):
self.real.__repr__()
self.fake.__repr__()
pred_real = self.netD(self.real.detach())
pred_fake = self.netD(**{'x': self.fake.detach()})
self.update_acc(pred_real, pred_fake)
self.loss_Dreal, self.loss_Dfake = loss_hinge_dis(pred_fake, pred_real, self.len_text_fake.detach(),
self.len_text.detach(), True)
self.loss_D = self.loss_Dreal + self.loss_Dfake
if not self.args.no_ocr_loss:
self.loss_OCR_real = self.compute_real_ocr_loss()
loss_total = self.loss_D + self.loss_OCR_real
else:
loss_total = self.loss_D
# backward
loss_total.backward()
if not self.args.no_ocr_loss:
self.clean_grad(self.netOCR.parameters())
return loss_total
def clean_grad(self, params):
for param in params:
param.grad[param.grad != param.grad] = 0
param.grad[torch.isnan(param.grad)] = 0
param.grad[torch.isinf(param.grad)] = 0
def backward_D_WL(self):
# Real
pred_real = self.netD(self.real.detach())
pred_fake = self.netD(**{'x': self.fake.detach()})
self.update_acc(pred_real, pred_fake)
self.loss_Dreal, self.loss_Dfake = loss_hinge_dis(pred_fake, pred_real, self.len_text_fake.detach(),
self.len_text.detach(), True)
self.loss_D = self.loss_Dreal + self.loss_Dfake
if not self.args.no_writer_loss:
self.loss_w_real = self.netW(self.real.detach(), self.input['wcl'].to(self.args.device)).mean()
# total loss
loss_total = self.loss_D + self.loss_w_real * self.args.writer_loss_weight
else:
loss_total = self.loss_D
# backward
loss_total.backward()
return loss_total
def optimize_D_WL(self):
self.forward()
self.set_requires_grad([self.netD], True)
self.set_requires_grad([self.netOCR], False)
self.set_requires_grad([self.netW], True)
self.set_requires_grad([self.netW], True)
self.optimizer_D.zero_grad()
self.optimizer_wl.zero_grad()
self.backward_D_WL()
def optimize_D_WL_step(self):
self.optimizer_D.step()
self.optimizer_wl.step()
self.optimizer_D.zero_grad()
self.optimizer_wl.zero_grad()
def compute_cycle_loss(self):
fake_input = torch.ones_like(self.sdata)
width = min(self.sdata.size(-1), self.fake.size(-1))
fake_input[:, :, :, :width] = self.fake.repeat(1, 15, 1, 1)[:, :, :, :width]
with torch.no_grad():
fake_style = self.netG.compute_style(fake_input)
return torch.sum(torch.abs(self.style.detach() - fake_style), dim=1).mean()
def backward_G_only(self):
self.gb_alpha = 0.7
if self.args.is_cycle:
self.Lcycle = self.compute_cycle_loss()
self.loss_G = loss_hinge_gen(self.netD(**{'x': self.fake}), self.len_text_fake.detach(), True).mean()
compute_ocr = not self.args.no_ocr_loss
if compute_ocr:
self.loss_OCR_fake = self.compute_fake_ocr_loss()
self.loss_G = self.loss_G + self.Lcycle
if compute_ocr:
self.loss_T = self.loss_G + self.loss_OCR_fake
else:
self.loss_T = self.loss_G
if compute_ocr:
grad_fake_OCR = torch.autograd.grad(self.loss_OCR_fake, self.fake, retain_graph=True)[0]
self.loss_grad_fake_OCR = 10 ** 6 * torch.mean(grad_fake_OCR ** 2)
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, retain_graph=True)[0]
self.loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
self.loss_T.backward(retain_graph=True)
if compute_ocr:
grad_fake_OCR = torch.autograd.grad(self.loss_OCR_fake, self.fake, create_graph=True, retain_graph=True)[0]
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, create_graph=True, retain_graph=True)[0]
a = self.gb_alpha * torch.div(torch.std(grad_fake_adv), self.epsilon + torch.std(grad_fake_OCR))
self.loss_OCR_fake = a.detach() * self.loss_OCR_fake
self.loss_T = self.loss_G + self.loss_OCR_fake
else:
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, create_graph=True, retain_graph=True)[0]
a = 1
self.loss_T = self.loss_G
if a is None:
print(self.loss_OCR_fake, self.loss_G, torch.std(grad_fake_adv))
if a > 1000 or a < 0.0001:
print(f'WARNING: alpha > 1000 or alpha < 0.0001 - alpha={a.item()}')
self.loss_T.backward(retain_graph=True)
if compute_ocr:
grad_fake_OCR = torch.autograd.grad(self.loss_OCR_fake, self.fake, create_graph=False, retain_graph=True)[0]
self.loss_grad_fake_OCR = 10 ** 6 * torch.mean(grad_fake_OCR ** 2)
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, create_graph=False, retain_graph=True)[0]
self.loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
with torch.no_grad():
self.loss_T.backward()
if compute_ocr:
if any(torch.isnan(torch.unsqueeze(self.loss_OCR_fake, dim=0))) or torch.isnan(self.loss_G):
print('loss OCR fake: ', self.loss_OCR_fake, ' loss_G: ', self.loss_G, ' words: ', self.words)
sys.exit()
def backward_G_WL(self):
self.gb_alpha = 0.7
if self.args.is_cycle:
self.Lcycle = self.compute_cycle_loss()
self.loss_G = loss_hinge_gen(self.netD(**{'x': self.fake}), self.len_text_fake.detach(), True).mean()
if not self.args.no_writer_loss:
self.loss_w_fake = self.netW(self.fake, self.input['wcl'].to(self.args.device)).mean()
self.loss_G = self.loss_G + self.Lcycle
if not self.args.no_writer_loss:
self.loss_T = self.loss_G + self.loss_w_fake * self.args.writer_loss_weight
else:
self.loss_T = self.loss_G
self.loss_T.backward(retain_graph=True)
if not self.args.no_writer_loss:
grad_fake_WL = torch.autograd.grad(self.loss_w_fake, self.fake, create_graph=True, retain_graph=True)[0]
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, create_graph=True, retain_graph=True)[0]
a = self.gb_alpha * torch.div(torch.std(grad_fake_adv), self.epsilon + torch.std(grad_fake_WL))
self.loss_w_fake = a.detach() * self.loss_w_fake
self.loss_T = self.loss_G + self.loss_w_fake
else:
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, create_graph=True, retain_graph=True)[0]
a = 1
self.loss_T = self.loss_G
if a is None:
print(self.loss_w_fake, self.loss_G, torch.std(grad_fake_adv))
if a > 1000 or a < 0.0001:
print(f'WARNING: alpha > 1000 or alpha < 0.0001 - alpha={a.item()}')
self.loss_T.backward(retain_graph=True)
if not self.args.no_writer_loss:
grad_fake_WL = torch.autograd.grad(self.loss_w_fake, self.fake, create_graph=False, retain_graph=True)[0]
self.loss_grad_fake_WL = 10 ** 6 * torch.mean(grad_fake_WL ** 2)
grad_fake_adv = torch.autograd.grad(self.loss_G, self.fake, create_graph=False, retain_graph=True)[0]
self.loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
with torch.no_grad():
self.loss_T.backward()
def backward_G(self):
self.opt.gb_alpha = 0.7
self.loss_G = loss_hinge_gen(self.netD(**{'x': self.fake, 'z': self.z}), self.len_text_fake.detach(),
self.opt.mask_loss)
# OCR loss on real data
compute_ocr = not self.args.no_ocr_loss
if compute_ocr:
self.loss_OCR_fake = self.compute_fake_ocr_loss()
else:
self.loss_OCR_fake = 0.0
self.loss_w_fake = self.netW(self.fake, self.wcl)
# self.loss_OCR_fake = self.loss_OCR_fake + self.loss_w_fake
# total loss
# l1 = self.params[0]*self.loss_G
# l2 = self.params[0]*self.loss_OCR_fake
# l3 = self.params[0]*self.loss_w_fake
self.loss_G_ = 10 * self.loss_G + self.loss_w_fake
self.loss_T = self.loss_G_ + self.loss_OCR_fake
grad_fake_OCR = torch.autograd.grad(self.loss_OCR_fake, self.fake, retain_graph=True)[0]
self.loss_grad_fake_OCR = 10 ** 6 * torch.mean(grad_fake_OCR ** 2)
grad_fake_adv = torch.autograd.grad(self.loss_G_, self.fake, retain_graph=True)[0]
self.loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
if not False:
self.loss_T.backward(retain_graph=True)
grad_fake_OCR = torch.autograd.grad(self.loss_OCR_fake, self.fake, create_graph=True, retain_graph=True)[0]
grad_fake_adv = torch.autograd.grad(self.loss_G_, self.fake, create_graph=True, retain_graph=True)[0]
# grad_fake_wl = torch.autograd.grad(self.loss_w_fake, self.fake, create_graph=True, retain_graph=True)[0]
a = self.opt.gb_alpha * torch.div(torch.std(grad_fake_adv), self.epsilon + torch.std(grad_fake_OCR))
# a0 = self.opt.gb_alpha * torch.div(torch.std(grad_fake_adv), self.epsilon+torch.std(grad_fake_wl))
if a is None:
print(self.loss_OCR_fake, self.loss_G_, torch.std(grad_fake_adv), torch.std(grad_fake_OCR))
if a > 1000 or a < 0.0001:
print(f'WARNING: alpha > 1000 or alpha < 0.0001 - alpha={a.item()}')
b = self.opt.gb_alpha * (torch.mean(grad_fake_adv) -
torch.div(torch.std(grad_fake_adv), self.epsilon + torch.std(grad_fake_OCR)) *
torch.mean(grad_fake_OCR))
# self.loss_OCR_fake = a.detach() * self.loss_OCR_fake + b.detach() * torch.sum(self.fake)
self.loss_OCR_fake = a.detach() * self.loss_OCR_fake
# self.loss_w_fake = a0.detach() * self.loss_w_fake
self.loss_T = (1 - 1 * self.opt.onlyOCR) * self.loss_G_ + self.loss_OCR_fake # + self.loss_w_fake
self.loss_T.backward(retain_graph=True)
grad_fake_OCR = torch.autograd.grad(self.loss_OCR_fake, self.fake, create_graph=False, retain_graph=True)[0]
grad_fake_adv = torch.autograd.grad(self.loss_G_, self.fake, create_graph=False, retain_graph=True)[0]
self.loss_grad_fake_OCR = 10 ** 6 * torch.mean(grad_fake_OCR ** 2)
self.loss_grad_fake_adv = 10 ** 6 * torch.mean(grad_fake_adv ** 2)
with torch.no_grad():
self.loss_T.backward()
else:
self.loss_T.backward()
if self.opt.clip_grad > 0:
clip_grad_norm_(self.netG.parameters(), self.opt.clip_grad)
if any(torch.isnan(loss_OCR_fake)) or torch.isnan(self.loss_G_):
print('loss OCR fake: ', loss_OCR_fake, ' loss_G: ', self.loss_G, ' words: ', self.words)
sys.exit()
def optimize_D_OCR(self):
self.forward()
self.set_requires_grad([self.netD], True)
self.set_requires_grad([self.netOCR], True)
self.optimizer_D.zero_grad()
# if self.opt.OCR_init in ['glorot', 'xavier', 'ortho', 'N02']:
self.optimizer_OCR.zero_grad()
self.backward_D_OCR()
def optimize_D_OCR_step(self):
self.optimizer_D.step()
self.optimizer_OCR.step()
self.optimizer_D.zero_grad()
self.optimizer_OCR.zero_grad()
def optimize_G_WL(self):
self.forward()
self.set_requires_grad([self.netD], False)
self.set_requires_grad([self.netOCR], False)
self.set_requires_grad([self.netW], False)
self.backward_G_WL()
def optimize_G_only(self):
self.forward()
self.set_requires_grad([self.netD], False)
self.set_requires_grad([self.netOCR], False)
self.set_requires_grad([self.netW], False)
self.backward_G_only()
def optimize_G_step(self):
self.optimizer_G.step()
self.optimizer_G.zero_grad()
def save_networks(self, epoch, save_dir):
"""Save all the networks to the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
for name in self.model_names:
if isinstance(name, str):
save_filename = '%s_net_%s.pth' % (epoch, name)
save_path = os.path.join(save_dir, save_filename)
net = getattr(self, 'net' + name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
# torch.save(net.module.cpu().state_dict(), save_path)
if len(self.gpu_ids) > 1:
torch.save(net.module.cpu().state_dict(), save_path)
else:
torch.save(net.cpu().state_dict(), save_path)
net.cuda(self.gpu_ids[0])
else:
torch.save(net.cpu().state_dict(), save_path)
def compute_d_scores(self, data_loader: torch.utils.data.DataLoader, amount: int = None):
scores = []
words = []
amount = len(data_loader) if amount is None else amount // data_loader.batch_size
with torch.no_grad():
for i in range(amount):
data = next(iter(data_loader))
words.extend([d.decode() for d in data['label']])
scores.extend(list(self.netD(data['img'].to(self.args.device)).squeeze().detach().cpu().numpy()))
return scores, words
def compute_d_scores_fake(self, data_loader: torch.utils.data.DataLoader, amount: int = None):
scores = []
words = []
amount = len(data_loader) if amount is None else amount // data_loader.batch_size
with torch.no_grad():
for i in range(amount):
data = next(iter(data_loader))
to_generate = [self.word_generator.generate().encode('utf-8') for _ in range(data_loader.batch_size)]
text_encode_fake, len_text_fake, encode_pos_fake = self.netconverter.encode(to_generate)
fake, _ = self.netG(data['simg'].to(self.args.device), text_encode_fake.to(self.args.device))
words.extend([d.decode() for d in to_generate])
scores.extend(list(self.netD(fake).squeeze().detach().cpu().numpy()))
return scores, words
def compute_d_stats(self, train_loader: torch.utils.data.DataLoader, val_loader: torch.utils.data.DataLoader):
train_values = []
val_values = []
fake_values = []
with torch.no_grad():
for i in range(self.rv_sample_size // train_loader.batch_size):
data = next(iter(train_loader))
train_values.append(self.netD(data['img'].to(self.args.device)).squeeze().detach().cpu().numpy())
for i in range(self.rv_sample_size // val_loader.batch_size):
data = next(iter(val_loader))
val_values.append(self.netD(data['img'].to(self.args.device)).squeeze().detach().cpu().numpy())
for i in range(self.rv_sample_size):
data = self.last_fakes[i]
fake_values.append(self.netD(data.unsqueeze(0)).squeeze().detach().cpu().numpy())
return np.mean(train_values), np.mean(val_values), np.mean(fake_values)
|