File size: 6,936 Bytes
fa0f216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
from .networks import *


class BidirectionalLSTM(nn.Module):

    def __init__(self, nIn, nHidden, nOut):
        super(BidirectionalLSTM, self).__init__()

        self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
        self.embedding = nn.Linear(nHidden * 2, nOut)


    def forward(self, input):
        recurrent, _ = self.rnn(input)
        T, b, h = recurrent.size()
        t_rec = recurrent.view(T * b, h)

        output = self.embedding(t_rec)  # [T * b, nOut]
        output = output.view(T, b, -1)

        return output


class CRNN(nn.Module):

    def __init__(self, args, leakyRelu=False):
        super(CRNN, self).__init__()
        self.args = args
        self.name = 'OCR'
        self.add_noise = False
        self.noise_fac = torch.distributions.Normal(loc=torch.tensor([0.]), scale=torch.tensor([0.2]))
        #assert opt.imgH % 16 == 0, 'imgH has to be a multiple of 16'

        ks = [3, 3, 3, 3, 3, 3, 2]
        ps = [1, 1, 1, 1, 1, 1, 0]
        ss = [1, 1, 1, 1, 1, 1, 1]
        nm = [64, 128, 256, 256, 512, 512, 512]

        cnn = nn.Sequential()
        nh = 256
        dealwith_lossnone=False # whether to replace all nan/inf in gradients to zero

        def convRelu(i, batchNormalization=False):
            nIn = 1 if i == 0 else nm[i - 1]
            nOut = nm[i]
            cnn.add_module('conv{0}'.format(i),
                           nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i]))
            if batchNormalization:
                cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut))
            if leakyRelu:
                cnn.add_module('relu{0}'.format(i),
                               nn.LeakyReLU(0.2, inplace=True))
            else:
                cnn.add_module('relu{0}'.format(i), nn.ReLU(True))

        convRelu(0)
        cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2))  # 64x16x64
        convRelu(1)
        cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2))  # 128x8x32
        convRelu(2, True)
        convRelu(3)
        cnn.add_module('pooling{0}'.format(2),
                       nn.MaxPool2d((2, 2), (2, 1), (0, 1)))  # 256x4x16
        convRelu(4, True)
        if self.args.resolution==63:
            cnn.add_module('pooling{0}'.format(3),
                           nn.MaxPool2d((2, 2), (2, 1), (0, 1)))  # 256x4x16
        convRelu(5)
        cnn.add_module('pooling{0}'.format(4),
                       nn.MaxPool2d((2, 2), (2, 1), (0, 1)))  # 512x2x16
        convRelu(6, True)  # 512x1x16

        self.cnn = cnn
        self.use_rnn = False
        if self.use_rnn:
            self.rnn = nn.Sequential(
                BidirectionalLSTM(512, nh, nh),
                BidirectionalLSTM(nh, nh, ))
        else:
            self.linear = nn.Linear(512, self.args.vocab_size)

        # replace all nan/inf in gradients to zero
        if dealwith_lossnone:
            self.register_backward_hook(self.backward_hook)

        self.device = torch.device('cuda:{}'.format(0)) 
        self.init = 'N02'
        # Initialize weights
        
        self = init_weights(self, self.init)

    def forward(self, input):
        # conv features
        if self.add_noise:
            input = input + self.noise_fac.sample(input.size()).squeeze(-1).to(self.args.device)
        conv = self.cnn(input)
        b, c, h, w = conv.size()
        if h!=1:
            print('a')
        assert h == 1, "the height of conv must be 1"
        conv = conv.squeeze(2)
        conv = conv.permute(2, 0, 1)  # [w, b, c]

        if self.use_rnn:
            # rnn features
            output = self.rnn(conv)
        else:
            output = self.linear(conv)
        return output

    def backward_hook(self, module, grad_input, grad_output):
        for g in grad_input:
            g[g != g] = 0  # replace all nan/inf in gradients to zero


class strLabelConverter(object):
    """Convert between str and label.
    NOTE:
        Insert `blank` to the alphabet for CTC.
    Args:
        alphabet (str): set of the possible characters.
        ignore_case (bool, default=True): whether or not to ignore all of the case.
    """

    def __init__(self, alphabet, ignore_case=False):
        self._ignore_case = ignore_case
        if self._ignore_case:
            alphabet = alphabet.lower()
        self.alphabet = alphabet + '-'  # for `-1` index

        self.dict = {}
        for i, char in enumerate(alphabet):
            # NOTE: 0 is reserved for 'blank' required by wrap_ctc
            self.dict[char] = i + 1

    def encode(self, text):
        """Support batch or single str.
        Args:
            text (str or list of str): texts to convert.
        Returns:
            torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.
            torch.IntTensor [n]: length of each text.
        """
        length = []
        result = []
        results = []
        for item in text:
            if isinstance(item, bytes): item = item.decode('utf-8', 'strict')
            length.append(len(item))
            for char in item:
                index = self.dict[char]
                result.append(index)
            results.append(result)
            result = []

        return torch.nn.utils.rnn.pad_sequence([torch.LongTensor(text) for text in results], batch_first=True), torch.IntTensor(length), None

    def decode(self, t, length, raw=False):
        """Decode encoded texts back into strs.
        Args:
            torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.
            torch.IntTensor [n]: length of each text.
        Raises:
            AssertionError: when the texts and its length does not match.
        Returns:
            text (str or list of str): texts to convert.
        """
        if length.numel() == 1:
            length = length[0]
            assert t.numel() == length, "text with length: {} does not match declared length: {}".format(t.numel(),
                                                                                                         length)
            if raw:
                return ''.join([self.alphabet[i - 1] for i in t])
            else:
                char_list = []
                for i in range(length):
                    if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])):
                        char_list.append(self.alphabet[t[i] - 1])
                return ''.join(char_list)
        else:
            # batch mode
            assert t.numel() == length.sum(), "texts with length: {} does not match declared length: {}".format(
                t.numel(), length.sum())
            texts = []
            index = 0
            for i in range(length.numel()):
                l = length[i]
                texts.append(
                    self.decode(
                        t[index:index + l], torch.IntTensor([l]), raw=raw))
                index += l
            return texts