File size: 18,831 Bytes
fa0f216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT
import functools

import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import random

from util.augmentations import ProgressiveWordCrop, CycleWordCrop, StaticWordCrop, RandomWordCrop
from . import BigGAN_layers as layers
from .networks import init_weights
import torchvision
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.

from models.blocks import Conv2dBlock, ResBlocks


# Discriminator architecture, same paradigm as G's above
def D_arch(ch=64, attention='64', input_nc=3, ksize='333333', dilation='111111'):
    arch = {}
    arch[256] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
                 'downsample': [True] * 6 + [False],
                 'resolution': [128, 64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 8)}}
    arch[128] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
                 'downsample': [True] * 5 + [False],
                 'resolution': [64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 8)}}
    arch[64] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
                'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
                'downsample': [True] * 4 + [False],
                'resolution': [32, 16, 8, 4, 4],
                'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                              for i in range(2, 7)}}
    arch[63] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
                'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
                'downsample': [True] * 4 + [False],
                'resolution': [32, 16, 8, 4, 4],
                'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                              for i in range(2, 7)}}
    arch[32] = {'in_channels': [input_nc] + [item * ch for item in [4, 4, 4]],
                'out_channels': [item * ch for item in [4, 4, 4, 4]],
                'downsample': [True, True, False, False],
                'resolution': [16, 16, 16, 16],
                'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                              for i in range(2, 6)}}
    arch[129] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
                 'downsample': [True] * 6 + [False],
                 'resolution': [128, 64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 8)}}
    arch[33] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
                 'downsample': [True] * 5 + [False],
                 'resolution': [64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 10)}}
    arch[31] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
                 'downsample': [True] * 5 + [False],
                 'resolution': [64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 10)}}
    arch[16] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
                 'out_channels': [item * ch for item in [1, 8, 16, 16]],
                 'downsample': [True] * 3 + [False],
                 'resolution': [16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 5)}}

    arch[17] = {'in_channels': [input_nc] + [ch * item for item in [1, 4]],
                 'out_channels': [item * ch for item in [1, 4, 8]],
                 'downsample': [True] * 3,
                 'resolution': [16, 8, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 5)}}


    arch[20] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
                 'out_channels': [item * ch for item in [1, 8, 16, 16]],
                 'downsample': [True] * 3 + [False],
                 'resolution': [16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 5)}}
    return arch


class Discriminator(nn.Module):

    def __init__(self, resolution, D_ch=64, D_wide=True, D_kernel_size=3, D_attn='64',
                 num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
                 SN_eps=1e-8, output_dim=1, D_mixed_precision=False, D_fp16=False,
                 D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, crop_size: list = None, **kwargs):

        super(Discriminator, self).__init__()
        self.crop = crop_size is not None and len(crop_size) > 0

        use_padding = False

        if self.crop:
            w_crop = StaticWordCrop(crop_size[0], use_padding=use_padding) if len(crop_size) == 1 else RandomWordCrop(crop_size[0], crop_size[1], use_padding=use_padding)

            self.augmenter = w_crop

        self.name = 'D'
        # gpu_ids
        self.gpu_ids = gpu_ids
        # one_hot representation
        self.one_hot = one_hot
        # Width multiplier
        self.ch = D_ch
        # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
        self.D_wide = D_wide
        # Resolution
        self.resolution = resolution
        # Kernel size
        self.kernel_size = D_kernel_size
        # Attention?
        self.attention = D_attn
        # Activation
        self.activation = D_activation
        # Initialization style
        self.init = D_init
        # Parameterization style
        self.D_param = D_param
        # Epsilon for Spectral Norm?
        self.SN_eps = SN_eps
        # Fp16?
        self.fp16 = D_fp16
        # Architecture
        self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]

        # Which convs, batchnorms, and linear layers to use
        # No option to turn off SN in D right now
        if self.D_param == 'SN':
            self.which_conv = functools.partial(layers.SNConv2d,
                                                kernel_size=3, padding=1,
                                                num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                eps=self.SN_eps)
            self.which_linear = functools.partial(layers.SNLinear,
                                                  num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                  eps=self.SN_eps)
            self.which_embedding = functools.partial(layers.SNEmbedding,
                                                     num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                     eps=self.SN_eps)
            if bn_linear=='SN':
                self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        else:
            self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
            self.which_linear = nn.Linear
            # We use a non-spectral-normed embedding here regardless;
            # For some reason applying SN to G's embedding seems to randomly cripple G
            self.which_embedding = nn.Embedding
        if one_hot:
            self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        # Prepare model
        # self.blocks is a doubly-nested list of modules, the outer loop intended
        # to be over blocks at a given resolution (resblocks and/or self-attention)
        self.blocks = []
        for index in range(len(self.arch['out_channels'])):
            self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
                                           out_channels=self.arch['out_channels'][index],
                                           which_conv=self.which_conv,
                                           wide=self.D_wide,
                                           activation=self.activation,
                                           preactivation=(index > 0),
                                           downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
            # If attention on this block, attach it to the end
            if self.arch['attention'][self.arch['resolution'][index]]:
                print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
                self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
                                                     self.which_conv)]
        # Turn self.blocks into a ModuleList so that it's all properly registered.
        self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
        # Linear output layer. The output dimension is typically 1, but may be
        # larger if we're e.g. turning this into a VAE with an inference output
        self.dropout = torch.nn.Dropout(p=0.5)
        self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)

        # Initialize weights
        if not skip_init:
            self = init_weights(self, D_init)

    def update_parameters(self, epoch: int):
        if self.crop:
            self.augmenter.update(epoch)

    def forward(self, x, y=None, **kwargs):
        # Stick x into h for cleaner for loops without flow control
        if self.crop and random.uniform(0.0, 1.0) < 0.33:
            x = self.augmenter(x)

        #imgs = [np.squeeze((img.detach().cpu().numpy() + 1.0) / 2.0) for img in x]
        #imgs = (np.vstack(imgs) * 255.0).astype(np.uint8)
        #cv2.imwrite(f"saved_images/debug/{random.randint(0, 1000)}.jpg", imgs)

        h = x
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)

        # Apply global sum pooling as in SN-GAN
        h = torch.sum(self.activation(h), [2, 3])
        out = self.linear(h)

        return out

    def return_features(self, x, y=None):
        # Stick x into h for cleaner for loops without flow control
        h = x
        block_output = []
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
                block_output.append(h)
        # Apply global sum pooling as in SN-GAN
        # h = torch.sum(self.activation(h), [2, 3])
        return block_output


class WDiscriminator(nn.Module):

    def __init__(self, resolution, n_classes, output_dim, D_ch=64, D_wide=True, D_kernel_size=3, D_attn='64',
                 num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
                 SN_eps=1e-8, D_mixed_precision=False, D_fp16=False,
                 D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False):
        super(WDiscriminator, self).__init__()

        self.name = 'D'
        # gpu_ids
        self.gpu_ids = gpu_ids
        # one_hot representation
        self.one_hot = one_hot
        # Width multiplier
        self.ch = D_ch
        # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
        self.D_wide = D_wide
        # Resolution
        self.resolution = resolution
        # Kernel size
        self.kernel_size = D_kernel_size
        # Attention?
        self.attention = D_attn
        # Number of classes
        self.n_classes = n_classes
        # Activation
        self.activation = D_activation
        # Initialization style
        self.init = D_init
        # Parameterization style
        self.D_param = D_param
        # Epsilon for Spectral Norm?
        self.SN_eps = SN_eps
        # Fp16?
        self.fp16 = D_fp16
        # Architecture
        self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]

        # Which convs, batchnorms, and linear layers to use
        # No option to turn off SN in D right now
        if self.D_param == 'SN':
            self.which_conv = functools.partial(layers.SNConv2d,
                                                kernel_size=3, padding=1,
                                                num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                eps=self.SN_eps)
            self.which_linear = functools.partial(layers.SNLinear,
                                                  num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                  eps=self.SN_eps)
            self.which_embedding = functools.partial(layers.SNEmbedding,
                                                     num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                     eps=self.SN_eps)
            if bn_linear == 'SN':
                self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        else:
            self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
            self.which_linear = nn.Linear
            # We use a non-spectral-normed embedding here regardless;
            # For some reason applying SN to G's embedding seems to randomly cripple G
            self.which_embedding = nn.Embedding
        if one_hot:
            self.which_embedding = functools.partial(layers.SNLinear,
                                                     num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                     eps=self.SN_eps)
        # Prepare model
        # self.blocks is a doubly-nested list of modules, the outer loop intended
        # to be over blocks at a given resolution (resblocks and/or self-attention)
        self.blocks = []
        for index in range(len(self.arch['out_channels'])):
            self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
                                           out_channels=self.arch['out_channels'][index],
                                           which_conv=self.which_conv,
                                           wide=self.D_wide,
                                           activation=self.activation,
                                           preactivation=(index > 0),
                                           downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
            # If attention on this block, attach it to the end
            if self.arch['attention'][self.arch['resolution'][index]]:
                print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
                self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
                                                     self.which_conv)]
        # Turn self.blocks into a ModuleList so that it's all properly registered.
        self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
        # Linear output layer. The output dimension is typically 1, but may be
        # larger if we're e.g. turning this into a VAE with an inference output
        self.dropout = torch.nn.Dropout(p=0.5)
        self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
        # Embedding for projection discrimination
        self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
        self.cross_entropy = nn.CrossEntropyLoss()
        # Initialize weights
        if not skip_init:
            self = init_weights(self, D_init)

    def update_parameters(self, epoch: int):
        pass

    def forward(self, x, y=None, **kwargs):
        # Stick x into h for cleaner for loops without flow control
        h = x
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
        # Apply global sum pooling as in SN-GAN
        h = torch.sum(self.activation(h), [2, 3])

        # Get initial class-unconditional output
        out = self.linear(h)
        # Get projection of final featureset onto class vectors and add to evidence
        #if y is not None:
        loss = self.cross_entropy(out, y.long())
        return loss

    def return_features(self, x, y=None):
        # Stick x into h for cleaner for loops without flow control
        h = x
        block_output = []
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
                block_output.append(h)
        # Apply global sum pooling as in SN-GAN
        # h = torch.sum(self.activation(h), [2, 3])
        return block_output


class Encoder(Discriminator):
    def __init__(self, opt, output_dim, **kwargs):
        super(Encoder, self).__init__(**vars(opt))
        self.output_layer = nn.Sequential(self.activation,
                                          nn.Conv2d(self.arch['out_channels'][-1], output_dim, kernel_size=(4,2), padding=0, stride=2))

    def forward(self, x):
        # Stick x into h for cleaner for loops without flow control
        h = x
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
        out = self.output_layer(h)
        return out