File size: 12,360 Bytes
fa0f216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import json
import os
import random
import shutil
from collections import defaultdict
import time
from datetime import timedelta
from pathlib import Path

import cv2
import numpy as np
import torch

from data.dataset import FolderDataset
from models.model import VATr
from util.loading import load_checkpoint, load_generator
from util.misc import FakeArgs
from util.text import TextGenerator
from util.vision import detect_text_bounds


def get_long_tail_chars():
    with open(f"files/longtail.txt", 'r') as f:
        chars = [c.rstrip() for c in f]

    chars.remove('')

    return chars


class Writer:
    def __init__(self, checkpoint_path, args, only_generator: bool = False):
        self.model = VATr(args)
        checkpoint = torch.load(checkpoint_path, map_location=args.device)
        load_checkpoint(self.model, checkpoint) if not only_generator else load_generator(self.model, checkpoint)
        self.model.eval()
        self.style_dataset = None

    def set_style_folder(self, style_folder, num_examples=15):
        word_lengths = None
        if os.path.exists(os.path.join(style_folder, "word_lengths.txt")):
            word_lengths = {}
            with open(os.path.join(style_folder, "word_lengths.txt"), 'r') as f:
                for line in f:
                    word, length = line.rstrip().split(",")
                    word_lengths[word] = int(length)

        self.style_dataset = FolderDataset(style_folder, num_examples=num_examples, word_lengths=word_lengths)

    @torch.no_grad()
    def generate(self, texts, align_words: bool = False, at_once: bool = False):
        if isinstance(texts, str):
            texts = [texts]
        if self.style_dataset is None:
            raise Exception('Style is not set')

        fakes = []
        for i, text in enumerate(texts, 1):
            print(f'[{i}/{len(texts)}] Generating for text: {text}')
            style = self.style_dataset.sample_style()
            style_images = style['simg'].unsqueeze(0).to(self.model.args.device)

            fake = self.create_fake_sentence(style_images, text, align_words, at_once)

            fakes.append(fake)
        return fakes

    @torch.no_grad()
    def create_fake_sentence(self, style_images, text, align_words=False, at_once=False):
        text = "".join([c for c in text if c in self.model.args.alphabet])

        text = text.split() if not at_once else [text]
        gap = np.ones((32, 16))

        text_encode, len_text, encode_pos = self.model.netconverter.encode(text)
        text_encode = text_encode.to(self.model.args.device).unsqueeze(0)

        fake = self.model._generate_fakes(style_images, text_encode, len_text)
        if not at_once:
            if align_words:
                fake = self.stitch_words(fake, show_lines=False)
            else:
                fake = np.concatenate(sum([[img, gap] for img in fake], []), axis=1)[:, :-16]
        else:
            fake = fake[0]
        fake = (fake * 255).astype(np.uint8)

        return fake

    @torch.no_grad()
    def generate_authors(self, text, dataset, align_words: bool = False, at_once: bool = False):
        fakes = []
        author_ids = []
        style = []

        for item in dataset:
            print(f"Generating author {item['wcl']}")
            style_images = item['simg'].to(self.model.args.device).unsqueeze(0)

            generated_lines = [self.create_fake_sentence(style_images, line, align_words, at_once) for line in text]

            fakes.append(generated_lines)
            author_ids.append(item['author_id'])
            style.append((((item['simg'].numpy() + 1.0) / 2.0) * 255).astype(np.uint8))

        return fakes, author_ids, style

    @torch.no_grad()
    def generate_characters(self, dataset, characters: str):
        """
        Generate each of the given characters for each of the authors in the dataset.
        """
        fakes = []

        text_encode, len_text, encode_pos = self.model.netconverter.encode([c for c in characters])
        text_encode = text_encode.to(self.model.args.device).unsqueeze(0)

        for item in dataset:
            print(f"Generating author {item['wcl']}")
            style_images = item['simg'].to(self.model.args.device).unsqueeze(0)
            fake = self.model.netG.evaluate(style_images, text_encode)

            fakes.append(fake)

        return fakes

    @torch.no_grad()
    def generate_batch(self, style_imgs, text):
        """
        Given a batch of style images and text, generate images using the model
        """
        device = self.model.args.device
        text_encode, _, _ = self.model.netconverter.encode(text)
        fakes, _ = self.model.netG(style_imgs.to(device), text_encode.to(device))
        return fakes

    @torch.no_grad()
    def generate_ocr(self, dataset, number: int, output_folder: str = 'saved_images/ocr', interpolate_style: bool = False, text_generator: TextGenerator = None, long_tail: bool = False):
        def create_and_write(style, text, interpolated=False):
            nonlocal image_counter, annotations

            text_encode, len_text, encode_pos = self.model.netconverter.encode([text])
            text_encode = text_encode.to(self.model.args.device)

            fake = self.model.netG.generate(style, text_encode)

            fake = (fake + 1) / 2
            fake = fake.cpu().numpy()
            fake = np.squeeze((fake * 255).astype(np.uint8))

            image_filename = f"{image_counter}.png" if not interpolated else f"{image_counter}_i.png"

            cv2.imwrite(os.path.join(output_folder, "generated", image_filename), fake)

            annotations.append((image_filename, text))

            image_counter += 1

        image_counter = 0
        annotations = []
        previous_style = None
        long_tail_chars = get_long_tail_chars()

        os.mkdir(os.path.join(output_folder, "generated"))
        if text_generator is None:
            os.mkdir(os.path.join(output_folder, "reference"))

        while image_counter < number:
            author_index = random.randint(0, len(dataset) - 1)
            item = dataset[author_index]

            style_images = item['simg'].to(self.model.args.device).unsqueeze(0)
            style = self.model.netG.compute_style(style_images)

            if interpolate_style and previous_style is not None:
                factor = float(np.clip(random.gauss(0.5, 0.15), 0.0, 1.0))
                intermediate_style = torch.lerp(previous_style, style, factor)
                text = text_generator.generate()

                create_and_write(intermediate_style, text, interpolated=True)

            if text_generator is not None:
                text = text_generator.generate()
            else:
                text = str(item['label'].decode())

                if long_tail and not any(c in long_tail_chars for c in text):
                    continue

                fake = (item['img'] + 1) / 2
                fake = fake.cpu().numpy()
                fake = np.squeeze((fake * 255).astype(np.uint8))

                image_filename = f"{image_counter}.png"

                cv2.imwrite(os.path.join(output_folder, "reference", image_filename), fake)

            create_and_write(style, text)

            previous_style = style

        if text_generator is None:
            with open(os.path.join(output_folder, "reference", "labels.csv"), 'w') as fr:
                fr.write(f"filename,words\n")
                for annotation in annotations:
                    fr.write(f"{annotation[0]},{annotation[1]}\n")

        with open(os.path.join(output_folder, "generated", "labels.csv"), 'w') as fg:
            fg.write(f"filename,words\n")
            for annotation in annotations:
                fg.write(f"{annotation[0]},{annotation[1]}\n")


    @staticmethod
    def stitch_words(words: list, show_lines: bool = False, scale_words: bool = False):
        gap_width = 16

        bottom_lines = []
        top_lines = []
        for i in range(len(words)):
            b, t = detect_text_bounds(words[i])
            bottom_lines.append(b)
            top_lines.append(t)
            if show_lines:
                words[i] = cv2.line(words[i], (0, b), (words[i].shape[1], b), (0, 0, 1.0))
                words[i] = cv2.line(words[i], (0, t), (words[i].shape[1], t), (1.0, 0, 0))

        bottom_lines = np.array(bottom_lines, dtype=float)

        if scale_words:
            top_lines = np.array(top_lines, dtype=float)
            gaps = bottom_lines - top_lines
            target_gap = np.mean(gaps)
            scales = target_gap / gaps

            bottom_lines *= scales
            top_lines *= scales
            words = [cv2.resize(word, None, fx=scale, fy=scale) for word, scale in zip(words, scales)]

        highest = np.max(bottom_lines)
        offsets = highest - bottom_lines
        height = np.max(offsets + [word.shape[0] for word in words])

        result = np.ones((int(height), gap_width * len(words) + sum([w.shape[1] for w in words])))

        x_pos = 0
        for bottom_line, word in zip(bottom_lines, words):
            offset = int(highest - bottom_line)

            result[offset:offset + word.shape[0], x_pos:x_pos+word.shape[1]] = word

            x_pos += word.shape[1] + gap_width

        return result

    @torch.no_grad()
    def generate_fid(self, path, loader, model_tag, split='train', fake_only=False, long_tail_only=False):
        if not isinstance(path, Path):
            path = Path(path)

        path.mkdir(exist_ok=True, parents=True)

        appendix = f"{split}" if not long_tail_only else f"{split}_lt"

        real_base = path / f'real_{appendix}'
        fake_base = path / model_tag / f'fake_{appendix}'

        if real_base.exists() and not fake_only:
            shutil.rmtree(real_base)

        if fake_base.exists():
            shutil.rmtree(fake_base)

        real_base.mkdir(exist_ok=True)
        fake_base.mkdir(exist_ok=True, parents=True)

        print('Saving images...')

        print('  Saving images on {}'.format(str(real_base)))
        print('  Saving images on {}'.format(str(fake_base)))

        long_tail_chars = get_long_tail_chars()
        counter = 0
        ann = defaultdict(lambda: {})
        start_time = time.time()
        for step, data in enumerate(loader):
            style_images = data['simg'].to(self.model.args.device)

            texts = [l.decode('utf-8') for l in data['label']]
            texts = [t.encode('utf-8') for t in texts]
            eval_text_encode, eval_len_text, _ = self.model.netconverter.encode(texts)
            eval_text_encode = eval_text_encode.to(self.model.args.device).unsqueeze(1)

            vis_style = np.vstack(style_images[0].detach().cpu().numpy())
            vis_style = ((vis_style + 1) / 2) * 255

            fakes = self.model.netG.evaluate(style_images, eval_text_encode)
            fake_images = torch.cat(fakes, 1).detach().cpu().numpy()
            real_images = data['img'].detach().cpu().numpy()
            writer_ids = data['wcl'].int().tolist()

            for i, (fake, real, wid, lb, img_id) in enumerate(zip(fake_images, real_images, writer_ids, data['label'], data['idx'])):
                lb = lb.decode()
                ann[f"{wid:03d}"][f'{img_id:05d}'] = lb
                img_id = f'{img_id:05d}.png'

                is_long_tail = any(c in long_tail_chars for c in lb)

                if long_tail_only and not is_long_tail:
                    continue

                fake_img_path = fake_base / f"{wid:03d}" / img_id
                fake_img_path.parent.mkdir(exist_ok=True, parents=True)
                cv2.imwrite(str(fake_img_path), 255 * ((fake.squeeze() + 1) / 2))

                if not fake_only:
                    real_img_path = real_base / f"{wid:03d}" / img_id
                    real_img_path.parent.mkdir(exist_ok=True, parents=True)
                    cv2.imwrite(str(real_img_path), 255 * ((real.squeeze() + 1) / 2))

                counter += 1

            eta = (time.time() - start_time) / (step + 1) * (len(loader) - step - 1)
            eta = str(timedelta(seconds=eta))
            if step % 100 == 0:
                print(f'[{(step + 1) / len(loader) * 100:.02f}%][{counter:05d}] ETA {eta}')

            with open(path / 'ann.json', 'w') as f:
                json.dump(ann, f)