File size: 12,360 Bytes
fa0f216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import json
import os
import random
import shutil
from collections import defaultdict
import time
from datetime import timedelta
from pathlib import Path
import cv2
import numpy as np
import torch
from data.dataset import FolderDataset
from models.model import VATr
from util.loading import load_checkpoint, load_generator
from util.misc import FakeArgs
from util.text import TextGenerator
from util.vision import detect_text_bounds
def get_long_tail_chars():
with open(f"files/longtail.txt", 'r') as f:
chars = [c.rstrip() for c in f]
chars.remove('')
return chars
class Writer:
def __init__(self, checkpoint_path, args, only_generator: bool = False):
self.model = VATr(args)
checkpoint = torch.load(checkpoint_path, map_location=args.device)
load_checkpoint(self.model, checkpoint) if not only_generator else load_generator(self.model, checkpoint)
self.model.eval()
self.style_dataset = None
def set_style_folder(self, style_folder, num_examples=15):
word_lengths = None
if os.path.exists(os.path.join(style_folder, "word_lengths.txt")):
word_lengths = {}
with open(os.path.join(style_folder, "word_lengths.txt"), 'r') as f:
for line in f:
word, length = line.rstrip().split(",")
word_lengths[word] = int(length)
self.style_dataset = FolderDataset(style_folder, num_examples=num_examples, word_lengths=word_lengths)
@torch.no_grad()
def generate(self, texts, align_words: bool = False, at_once: bool = False):
if isinstance(texts, str):
texts = [texts]
if self.style_dataset is None:
raise Exception('Style is not set')
fakes = []
for i, text in enumerate(texts, 1):
print(f'[{i}/{len(texts)}] Generating for text: {text}')
style = self.style_dataset.sample_style()
style_images = style['simg'].unsqueeze(0).to(self.model.args.device)
fake = self.create_fake_sentence(style_images, text, align_words, at_once)
fakes.append(fake)
return fakes
@torch.no_grad()
def create_fake_sentence(self, style_images, text, align_words=False, at_once=False):
text = "".join([c for c in text if c in self.model.args.alphabet])
text = text.split() if not at_once else [text]
gap = np.ones((32, 16))
text_encode, len_text, encode_pos = self.model.netconverter.encode(text)
text_encode = text_encode.to(self.model.args.device).unsqueeze(0)
fake = self.model._generate_fakes(style_images, text_encode, len_text)
if not at_once:
if align_words:
fake = self.stitch_words(fake, show_lines=False)
else:
fake = np.concatenate(sum([[img, gap] for img in fake], []), axis=1)[:, :-16]
else:
fake = fake[0]
fake = (fake * 255).astype(np.uint8)
return fake
@torch.no_grad()
def generate_authors(self, text, dataset, align_words: bool = False, at_once: bool = False):
fakes = []
author_ids = []
style = []
for item in dataset:
print(f"Generating author {item['wcl']}")
style_images = item['simg'].to(self.model.args.device).unsqueeze(0)
generated_lines = [self.create_fake_sentence(style_images, line, align_words, at_once) for line in text]
fakes.append(generated_lines)
author_ids.append(item['author_id'])
style.append((((item['simg'].numpy() + 1.0) / 2.0) * 255).astype(np.uint8))
return fakes, author_ids, style
@torch.no_grad()
def generate_characters(self, dataset, characters: str):
"""
Generate each of the given characters for each of the authors in the dataset.
"""
fakes = []
text_encode, len_text, encode_pos = self.model.netconverter.encode([c for c in characters])
text_encode = text_encode.to(self.model.args.device).unsqueeze(0)
for item in dataset:
print(f"Generating author {item['wcl']}")
style_images = item['simg'].to(self.model.args.device).unsqueeze(0)
fake = self.model.netG.evaluate(style_images, text_encode)
fakes.append(fake)
return fakes
@torch.no_grad()
def generate_batch(self, style_imgs, text):
"""
Given a batch of style images and text, generate images using the model
"""
device = self.model.args.device
text_encode, _, _ = self.model.netconverter.encode(text)
fakes, _ = self.model.netG(style_imgs.to(device), text_encode.to(device))
return fakes
@torch.no_grad()
def generate_ocr(self, dataset, number: int, output_folder: str = 'saved_images/ocr', interpolate_style: bool = False, text_generator: TextGenerator = None, long_tail: bool = False):
def create_and_write(style, text, interpolated=False):
nonlocal image_counter, annotations
text_encode, len_text, encode_pos = self.model.netconverter.encode([text])
text_encode = text_encode.to(self.model.args.device)
fake = self.model.netG.generate(style, text_encode)
fake = (fake + 1) / 2
fake = fake.cpu().numpy()
fake = np.squeeze((fake * 255).astype(np.uint8))
image_filename = f"{image_counter}.png" if not interpolated else f"{image_counter}_i.png"
cv2.imwrite(os.path.join(output_folder, "generated", image_filename), fake)
annotations.append((image_filename, text))
image_counter += 1
image_counter = 0
annotations = []
previous_style = None
long_tail_chars = get_long_tail_chars()
os.mkdir(os.path.join(output_folder, "generated"))
if text_generator is None:
os.mkdir(os.path.join(output_folder, "reference"))
while image_counter < number:
author_index = random.randint(0, len(dataset) - 1)
item = dataset[author_index]
style_images = item['simg'].to(self.model.args.device).unsqueeze(0)
style = self.model.netG.compute_style(style_images)
if interpolate_style and previous_style is not None:
factor = float(np.clip(random.gauss(0.5, 0.15), 0.0, 1.0))
intermediate_style = torch.lerp(previous_style, style, factor)
text = text_generator.generate()
create_and_write(intermediate_style, text, interpolated=True)
if text_generator is not None:
text = text_generator.generate()
else:
text = str(item['label'].decode())
if long_tail and not any(c in long_tail_chars for c in text):
continue
fake = (item['img'] + 1) / 2
fake = fake.cpu().numpy()
fake = np.squeeze((fake * 255).astype(np.uint8))
image_filename = f"{image_counter}.png"
cv2.imwrite(os.path.join(output_folder, "reference", image_filename), fake)
create_and_write(style, text)
previous_style = style
if text_generator is None:
with open(os.path.join(output_folder, "reference", "labels.csv"), 'w') as fr:
fr.write(f"filename,words\n")
for annotation in annotations:
fr.write(f"{annotation[0]},{annotation[1]}\n")
with open(os.path.join(output_folder, "generated", "labels.csv"), 'w') as fg:
fg.write(f"filename,words\n")
for annotation in annotations:
fg.write(f"{annotation[0]},{annotation[1]}\n")
@staticmethod
def stitch_words(words: list, show_lines: bool = False, scale_words: bool = False):
gap_width = 16
bottom_lines = []
top_lines = []
for i in range(len(words)):
b, t = detect_text_bounds(words[i])
bottom_lines.append(b)
top_lines.append(t)
if show_lines:
words[i] = cv2.line(words[i], (0, b), (words[i].shape[1], b), (0, 0, 1.0))
words[i] = cv2.line(words[i], (0, t), (words[i].shape[1], t), (1.0, 0, 0))
bottom_lines = np.array(bottom_lines, dtype=float)
if scale_words:
top_lines = np.array(top_lines, dtype=float)
gaps = bottom_lines - top_lines
target_gap = np.mean(gaps)
scales = target_gap / gaps
bottom_lines *= scales
top_lines *= scales
words = [cv2.resize(word, None, fx=scale, fy=scale) for word, scale in zip(words, scales)]
highest = np.max(bottom_lines)
offsets = highest - bottom_lines
height = np.max(offsets + [word.shape[0] for word in words])
result = np.ones((int(height), gap_width * len(words) + sum([w.shape[1] for w in words])))
x_pos = 0
for bottom_line, word in zip(bottom_lines, words):
offset = int(highest - bottom_line)
result[offset:offset + word.shape[0], x_pos:x_pos+word.shape[1]] = word
x_pos += word.shape[1] + gap_width
return result
@torch.no_grad()
def generate_fid(self, path, loader, model_tag, split='train', fake_only=False, long_tail_only=False):
if not isinstance(path, Path):
path = Path(path)
path.mkdir(exist_ok=True, parents=True)
appendix = f"{split}" if not long_tail_only else f"{split}_lt"
real_base = path / f'real_{appendix}'
fake_base = path / model_tag / f'fake_{appendix}'
if real_base.exists() and not fake_only:
shutil.rmtree(real_base)
if fake_base.exists():
shutil.rmtree(fake_base)
real_base.mkdir(exist_ok=True)
fake_base.mkdir(exist_ok=True, parents=True)
print('Saving images...')
print(' Saving images on {}'.format(str(real_base)))
print(' Saving images on {}'.format(str(fake_base)))
long_tail_chars = get_long_tail_chars()
counter = 0
ann = defaultdict(lambda: {})
start_time = time.time()
for step, data in enumerate(loader):
style_images = data['simg'].to(self.model.args.device)
texts = [l.decode('utf-8') for l in data['label']]
texts = [t.encode('utf-8') for t in texts]
eval_text_encode, eval_len_text, _ = self.model.netconverter.encode(texts)
eval_text_encode = eval_text_encode.to(self.model.args.device).unsqueeze(1)
vis_style = np.vstack(style_images[0].detach().cpu().numpy())
vis_style = ((vis_style + 1) / 2) * 255
fakes = self.model.netG.evaluate(style_images, eval_text_encode)
fake_images = torch.cat(fakes, 1).detach().cpu().numpy()
real_images = data['img'].detach().cpu().numpy()
writer_ids = data['wcl'].int().tolist()
for i, (fake, real, wid, lb, img_id) in enumerate(zip(fake_images, real_images, writer_ids, data['label'], data['idx'])):
lb = lb.decode()
ann[f"{wid:03d}"][f'{img_id:05d}'] = lb
img_id = f'{img_id:05d}.png'
is_long_tail = any(c in long_tail_chars for c in lb)
if long_tail_only and not is_long_tail:
continue
fake_img_path = fake_base / f"{wid:03d}" / img_id
fake_img_path.parent.mkdir(exist_ok=True, parents=True)
cv2.imwrite(str(fake_img_path), 255 * ((fake.squeeze() + 1) / 2))
if not fake_only:
real_img_path = real_base / f"{wid:03d}" / img_id
real_img_path.parent.mkdir(exist_ok=True, parents=True)
cv2.imwrite(str(real_img_path), 255 * ((real.squeeze() + 1) / 2))
counter += 1
eta = (time.time() - start_time) / (step + 1) * (len(loader) - step - 1)
eta = str(timedelta(seconds=eta))
if step % 100 == 0:
print(f'[{(step + 1) / len(loader) * 100:.02f}%][{counter:05d}] ETA {eta}')
with open(path / 'ann.json', 'w') as f:
json.dump(ann, f)
|