Vittorio Pippi commited on
Commit
eca827c
·
1 Parent(s): 605e556

Update README with PyTorch import and example adjustments for batch image generation

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -56,6 +56,7 @@ library_name: t5
56
  Below is a minimal usage example in Python. You can load the model with `AutoModel.from_pretrained(...)` and simply call `.generate(...)` or `.generate_batch(...)` to create images.
57
 
58
  ```python
 
59
  from PIL import Image
60
  from transformers import AutoModel
61
  from huggingface_hub import hf_hub_download
@@ -67,7 +68,7 @@ def load_image(img_path):
67
  img = img.resize((img.width * 64 // img.height, 64))
68
  img = F.to_tensor(img)
69
  img = F.normalize(img, [0.5], [0.5])
70
- return img.unsqueeze(0)
71
 
72
  # 1. Load the model
73
  model = AutoModel.from_pretrained("blowing-up-groundhogs/emuru", trust_remote_code=True)
@@ -96,10 +97,10 @@ generated_pil_image.save("generated_image.png")
96
  You can also generate a batch of images if you have multiple style texts, generation texts, and style images:
97
 
98
  ```python
99
- style_texts = ["Style text 1", "Style text 2"]
100
- gen_texts = ["Gen text 1", "Gen text 2"]
101
- style_imgs = torch.stack([img1, img2], dim=0) # shape: (batch_size, C, H, W)
102
- lengths = [img1.size(-1), img2.size(-1)]
103
 
104
  output_images = model.generate_batch(
105
  style_texts=style_texts,
@@ -120,6 +121,6 @@ for idx, pil_img in enumerate(output_images):
120
  If you use Emuru in your research or wish to refer to it, please cite:
121
 
122
  ```
123
- ...
124
  ```
125
 
 
56
  Below is a minimal usage example in Python. You can load the model with `AutoModel.from_pretrained(...)` and simply call `.generate(...)` or `.generate_batch(...)` to create images.
57
 
58
  ```python
59
+ import torch
60
  from PIL import Image
61
  from transformers import AutoModel
62
  from huggingface_hub import hf_hub_download
 
68
  img = img.resize((img.width * 64 // img.height, 64))
69
  img = F.to_tensor(img)
70
  img = F.normalize(img, [0.5], [0.5])
71
+ return img
72
 
73
  # 1. Load the model
74
  model = AutoModel.from_pretrained("blowing-up-groundhogs/emuru", trust_remote_code=True)
 
97
  You can also generate a batch of images if you have multiple style texts, generation texts, and style images:
98
 
99
  ```python
100
+ style_texts = ['THE JOLLY IS "U"', 'THE JOLLY IS "M"', 'THE JOLLY IS "R"']
101
+ gen_texts = ['EMURU', 'EMURU', 'EMURU']
102
+ style_imgs = torch.stack([style_img, style_img, style_img], dim=0) # shape: (batch_size, C, H, W)
103
+ lengths = [style_img.size(-1), style_img.size(-1), style_img.size(-1)]
104
 
105
  output_images = model.generate_batch(
106
  style_texts=style_texts,
 
121
  If you use Emuru in your research or wish to refer to it, please cite:
122
 
123
  ```
124
+ Wait for it...
125
  ```
126