blockblockblock commited on
Commit
5bf2699
·
verified ·
1 Parent(s): f7a43c5

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +37 -4
  2. output.safetensors +2 -2
README.md CHANGED
@@ -16,7 +16,9 @@ For more info see our [End-to-end development service for custom LLMs and AI sys
16
 
17
  This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data.
18
 
19
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/6MKLoX2ruLIaREiyb6coO.png)
 
 
20
 
21
  **Approach:**
22
 
@@ -32,7 +34,7 @@ Notably, we layered parallelism on top of Ring Attention with a custom network t
32
 
33
  **Data:**
34
 
35
- For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B).
36
 
37
  **Progressive Training Details:**
38
 
@@ -50,9 +52,37 @@ For training data, we generate long contexts by augmenting [SlimPajama](https://
50
  | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S |
51
  | Minutes to Train (Wall)| 202 | 555 | 61 | 87 |
52
 
53
- **Quants**:
54
- - [GGUF](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit)
 
 
 
56
 
57
  ## The Gradient AI Team
58
 
@@ -72,6 +102,9 @@ Drop an email to [[email protected]](mailto:[email protected])
72
 
73
  [3] https://github.com/jzhang38/EasyContext
74
 
 
 
 
75
 
76
  ----
77
 
 
16
 
17
  This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data.
18
 
19
+ **Update (5/3): We further fine-tuned our model to strengthen its assistant-like chat ability as well. The NIAH result is updated.**
20
+
21
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/-qaI__83ksClzoJzlqZjq.png)
22
 
23
  **Approach:**
24
 
 
34
 
35
  **Data:**
36
 
37
+ For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B). We also fine-tune on a chat dataset based on UltraChat [4], following a similar recipe for data augmentation to [2].
38
 
39
  **Progressive Training Details:**
40
 
 
52
  | GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S |
53
  | Minutes to Train (Wall)| 202 | 555 | 61 | 87 |
54
 
55
+
56
+ **Evaluation:**
57
+
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585dc9be92bc5f258156bd6/mWxIGZNi3ejlmeIDWafKu.png)
59
+
60
+ ```
61
+ EVAL_MAX_CONTEXT_LENGTH=1040200
62
+ EVAL_MIN_CONTEXT_LENGTH=100
63
+ EVAL_CONTEXT_INTERVAL=86675
64
+ EVAL_DEPTH_INTERVAL=0.2
65
+ EVAL_RND_NUMBER_DIGITS=8
66
+
67
+ HAYSTACK1:
68
+ EVAL_GENERATOR_TOKENS=25
69
+
70
+ HAYSTACK2:
71
+ EVAL_CONTEXT_INTERVAL=173350
72
+ EVAL_GENERATOR_TOKENS=150000
73
+
74
+ HAYSTACK3:
75
+ EVAL_GENERATOR_TOKENS=925000
76
+ ```
77
+
78
+ All boxes not pictured for Haystack 1 and 3 are 100% accurate. Haystacks 1,2 and 3 are further detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
79
+
80
+ **Quants:**
81
+ - [GGUF by Crusoe](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF). Note that you need to add 128009 as [special token with llama.cpp](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k/discussions/13).
82
  - [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit)
83
+ - [Ollama](https://ollama.com/library/llama3-gradient)
84
+ - vLLM docker image, recommended to load via `--max-model-len 32768`
85
+ - If you are interested in a hosted version, drop us a mail below.
86
 
87
  ## The Gradient AI Team
88
 
 
102
 
103
  [3] https://github.com/jzhang38/EasyContext
104
 
105
+ [3] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan
106
+ Liu, Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling
107
+ high-quality instructional conversations. arXiv preprint arXiv:2305.14233, 2023.
108
 
109
  ----
110
 
output.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:99270dfbd682a25a819d6bd92e13f0fbba046745ef0543d89126f110182e747f
3
- size 4956801808
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbcb8866a8160dd042d8d401b668842b1bf40189f39b635fa5f65d9bca5d9905
3
+ size 4956183188